Classical field in quantum field theory?

Click For Summary
SUMMARY

The discussion centers on the construction of coherent states in quantum field theory (QFT) and the determination of the dependence of the function ##\beta(p)## on momentum ##p##. The scalar field expansion follows the conventions outlined in Schwarz's book, with the field expectation value expressed in terms of ##\beta_p##. Participants agree that while ##\beta(p)## can be chosen arbitrarily, its assignment influences the resulting classical field, particularly in contexts like dark matter cosmology. The coherent state representation leads to classical-like behavior when the occupation number is large, necessitating careful consideration of how ##\beta(p)## is defined.

PREREQUISITES
  • Understanding of quantum field theory (QFT) principles
  • Familiarity with scalar field expansions and coherent states
  • Knowledge of harmonic oscillators in quantum mechanics
  • Basic concepts of dark matter cosmology and classical field theory
NEXT STEPS
  • Explore the derivation of coherent states in quantum field theory
  • Research the implications of different choices for ##\beta(p)## in scalar fields
  • Study the relationship between quantum fields and classical fields in cosmological contexts
  • Investigate the role of occupation numbers in the transition from quantum to classical behavior in fields
USEFUL FOR

The discussion is beneficial for theoretical physicists, cosmologists, and researchers in quantum field theory, particularly those interested in the interplay between quantum mechanics and classical field behavior in cosmological models.

Tan Tixuan
Messages
3
Reaction score
1
In quantum field theory, we have the following expansion on a scalar field (I follow the convention of Schwarz's book)
$$\phi(\vec{x},t)=\int d^3 p \frac{a_p exp(-ip_\mu x^\mu)+a_p^{\dagger}exp(ip_\mu x^\mu)}{(2\pi)^3 \sqrt{2\omega_p}} \quad p^{\mu}=(\omega_p,\vec{p})$$
With commutation relation
$$[a_q,a_p^{\dagger}]=(2\pi)^3 \delta^3 (p-q)$$
We can construct a coherent state of the field by the following, with $\beta_p\equiv \beta(p)$
$$|C\rangle=exp\{-\frac{1}{2}\int d^3p |\beta_p|^2\}exp\{\int \frac{d^3p}{(2\pi)^\frac{3}{2}} (\beta_p a_p^{\dagger})\}|0\rangle$$

It is then not hard to verify that the field expectation value is

$$\langle C|\phi|C\rangle=\int \frac{d^3 p}{(2\pi)^{3/2}}\frac{\beta_p e^{-ip^{\mu}x_{\mu}}}{\sqrt{2\omega_p}}+H.C.$$

**My question is the following**:

It seems to me that ##\phi## is only a simple addition of a bunch of independent harmonic oscillators, and the value of ##\beta(p)## can be determined totally arbitrarily,**i.e. there is no a priori way to determine the dependence of $\beta$ on p . I want to know what is the reasonable way to determine this dependence.** For example, we can make ##\beta(p)## be non-zero only for ##p=0##, and then we would only be left with one simple harmonic oscillator, and the resulting field expectation value is
$$\langle C|\phi|C\rangle\sim cos(mt+\beta_0)$$However,it is often said in the literature that classical field is produced by the coherent state, especially in the study of dark matter cosmology. For example, in [this paper][1], equation 2.3, it is assumed that because the occupation number is huge, the dark matter field is almost classic, and can assume the profile
$$\phi_1(\vec{x},t)=A(\vec{x})cos(mt+\alpha(\vec{x}))$$

In this case, how should I construct ##\beta_1(p)## corresponding to ##\phi_1##, and what is the justification for this kind of profile?(the profile of ##\beta##). i.e. how should I describe it in terms of quantum field theory?

[1]: https://arxiv.org/abs/1309.5888
 
  • Like
Likes   Reactions: Demystifier
Physics news on Phys.org
There is no single possible assignment. A classical field generally depends on the spacetime event (or the Fourier transform depends on the 4-momentum). It depends on the actual realization of the field you want.

Edit: And yes, the quantum field in a non-interacting field theory is just a bunch of harmonic oscillators.
 
Orodruin said:
There is no single possible assignment. A classical field generally depends on the spacetime event (or the Fourier transform depends on the 4-momentum). It depends on the actual realization of the field you want.

Edit: And yes, the quantum field in a non-interacting field theory is just a bunch of harmonic oscillators.
So are you saying that the assignment I propose, that ##\beta## being a delta function is a valid assignment?
 
Tan Tixuan said:
So are you saying that the assignment I propose, that ##\beta## being a delta function is a valid assignment?
That would, in essence, be a plane wave.
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K