Quantization of the electromagnetic field

In summary, the conversation discusses the quantization of the electromagnetic field and how it relates to the expression of the electrostatic and magnetostatic fields. The solution to this problem is solved by rewriting the Hamiltonian in terms of a new field and defining the groundstate as a coherent state of the free theory. The question of how to express the interaction term with the electrostatic field in the "Stark effect" case is also raised.
  • #1
Konte
90
1
TL;DR Summary
quantization, electromagnetic field
Hi everyone,

It is about the quantization of the electromagnetic field. The expression of field E and B are defined with:
-the annihilation a- and creation a+ operators, and the frequency ω.
So my question is: how does these fields must be expressed if they where "static"? I mean, how the electrostatic and magnetostatic fields must be expressed in quantized version?

Thank you.
Konte
 
Physics news on Phys.org
  • #3
Konte said:
Summary:: quantization, electromagnetic field

Hi everyone,

It is about the quantization of the electromagnetic field. The expression of field E and B are defined with:
-the annihilation a- and creation a+ operators, and the frequency ω.
So my question is: how does these fields must be expressed if they where "static"? I mean, how the electrostatic and magnetostatic fields must be expressed in quantized version?

Thank you.
Konte
In quantum theory a "situation" is described by the state, not by the operators describing observables.
 
  • Like
Likes Konte
  • #5
Here's a rough sketch of how this problem is solved, using a scalar field instead of a vector field for simplicity.

We start with the KG Hamiltonian with a spatially-dependent source ##J(\mathbf{x})##:
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi.$$ Rewrite the Hamiltonian in terms of a new field ##\psi## related to ##\phi## via
$$\phi = \psi + K(\mathbf{x}),$$ where ##K## is some fixed function. If we choose ##K## such that
$$-\nabla^2 K + m^2 K +J = 0,$$then (after integrating out surface terms) the Hamiltonian will simplify to
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \psi)^2 + \frac{1}{2}m^2\psi^2 + ...,$$ where the ommited terms depend only on ##K##. The important point is that now the linear term is gone and we can expand via creation-annihilation operators as if the field were free.

The groundstate of the field in the presence of ##J##, which I will call ##|\Omega\rangle##, is defined by $$a_\mathbf{k} |\Omega\rangle = 0$$ where ##a_\mathbf{k}## is the annihilation operator associated with the field ##\psi.## Now ##a## is related to the annihilation operators of the original field ##\phi##, which I will call ##b##, by some relation along the lines of $$a_\mathbf{k} = b_\mathbf{k} - f(\mathbf{k})$$ where ##f(\mathbf{k})## is some c-number. You can figure out what ##f(\mathbf{k})## should be exactly from the second expression above if you feel so inclined (I don't). In any case the definition of the groundstate ##|\Omega\rangle## can now be rewritten as
$$b_\mathbf{k} |\Omega\rangle = f(\mathbf{k})|\Omega\rangle,$$ which means that ##|\Omega\rangle## is some coherent state of the free theory.
 
Last edited:
  • Like
Likes Konte, gentzen, mattt and 1 other person
  • #6
HomogenousCow said:
Here's a rough sketch of how this problem is solved, using a scalar field instead of a vector field for simplicity.

We start with the KG Hamiltonian with a spatially-dependent source ##J(\mathbf{x})##:
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi.$$ Rewrite the Hamiltonian in terms of a new field ##\psi## related to ##\phi## via
$$\phi = \psi + K(\mathbf{x}),$$ where ##K## is some fixed function. If we choose ##K## such that
$$-\nabla^2 K + m^2 K +J = 0,$$then (after integrating out surface terms) the Hamiltonian will simplify to
$$H = \int d^{3}x ~\frac{1}{2}\pi^2 + \frac{1}{2}(\nabla \psi)^2 + \frac{1}{2}m^2\psi^2 + ...,$$ where the ommited terms depend only on ##K##. The important point is that now the linear term is gone and we can expand via creation-annihilation operators as if the field were free.

The groundstate of the field in the presence of ##J##, which I will call ##|\Omega\rangle##, is defined by $$a_\mathbf{k} |\Omega\rangle = 0$$ where ##a_\mathbf{k}## is the annihilation operator associated with the field ##\psi.## Now ##a## is related to the annihilation operators of the original field ##\phi##, which I will call ##b##, by some relation along the lines of $$a_\mathbf{k} = b_\mathbf{k} - f(\mathbf{k})$$ where ##f(\mathbf{k})## is some c-number. You can figure out what ##f(\mathbf{k})## should be exactly from the second expression above if you feel so inclined (I don't). In any case the definition of the groundstate ##|\Omega\rangle## can now be rewritten as
$$b_\mathbf{k} |\Omega\rangle = f(\mathbf{k})|\Omega\rangle,$$ which means that ##|\Omega\rangle## is some coherent state of the free theory.
I have a little question that answer can surely help me to understand more: how do we express the interaction term (in the Schrodinger equation) with electrostatic field in the "Stark effect" case when we treat the field as quantized field ? In semi-quantum case, it is only expressed as the product of dipolar moment with classical electrostatic field : ##\mu . E##
 

1. What is quantization of the electromagnetic field?

Quantization of the electromagnetic field is a fundamental principle in quantum mechanics that states that the electromagnetic field can only exist in discrete energy packets, or quanta. This means that the energy of the electromagnetic field is not continuous, but rather comes in specific, quantized amounts.

2. How does quantization of the electromagnetic field relate to light?

Light is a form of electromagnetic radiation, and therefore, it is subject to quantization. This means that light also exists in discrete energy packets, called photons. The energy of a photon is directly related to its frequency, with higher frequency light having higher energy photons.

3. What is the significance of quantization of the electromagnetic field?

The quantization of the electromagnetic field helps to explain many phenomena in the physical world, such as the photoelectric effect and blackbody radiation. It also provides a framework for understanding the behavior of light and other electromagnetic waves at the quantum level.

4. How was the concept of quantization of the electromagnetic field developed?

The idea of quantization of the electromagnetic field was first introduced by Max Planck in 1900 to explain the behavior of blackbody radiation. Later, in 1905, Albert Einstein used this concept to explain the photoelectric effect, and in 1926, Niels Bohr used it to develop his model of the atom.

5. What are some practical applications of quantization of the electromagnetic field?

Quantization of the electromagnetic field has led to many practical applications, such as the development of lasers, solar cells, and other technologies that rely on the behavior of light at the quantum level. It also plays a crucial role in modern technologies such as quantum computing and cryptography.

Similar threads

  • Quantum Physics
Replies
13
Views
1K
  • Quantum Physics
Replies
3
Views
766
  • Quantum Physics
Replies
3
Views
829
Replies
1
Views
357
Replies
24
Views
1K
Replies
78
Views
3K
Replies
7
Views
721
Replies
30
Views
3K
  • Quantum Physics
Replies
8
Views
835
Back
Top