I Classical Hayden-Preskill Randomizer

  • I
  • Thread starter Thread starter vancouver_water
  • Start date Start date
  • Tags Tags
    Classical
vancouver_water
Messages
76
Reaction score
10
TL;DR Summary
Why is it possible for Bob to decode Alices ##k##-bit message after only reading ##k+c##
I am reading this paper: https://arxiv.org/abs/0708.4025. In section 2, they describe a classical black hole as a classical randomizer. The black hole initially is a ##n-k## bit string, and Alice sends a ##k##-bit string into the black hole. A permutation of all ##2^n## possible strings is the state after the black hole thermalizes. Bob then receives ##k+c## bits via radiation, and it is assumed that Bob knows exactly the dynamics of the black hole. They claim that Bob can decode Alices message with high probability with only ##k+c## bits. But there are classical error correcting codes that make it very difficult to decode a message even will all bits, so how is this possible?

The only solution I can think of is that Bob can't necessarily decode the message but only that with ##k+c## bits the information contained in the message is still there. What am I missing?
 
Physics news on Phys.org
What you are missing is that Bob does not need to decode the message in order to access the information contained in it. Bob can use the randomness of the black hole to extract the information without decoding it. In other words, Bob can use the randomness of the black hole to gain access to the message's content without having to decode it. This is possible because the black hole's randomness makes it so that no two positions in the bit string are correlated with each other. This allows Bob to access the information contained in the bits without having to decode them.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top