MHB Closed form solution for large eigenvalues

Dustinsfl
Messages
2,217
Reaction score
5
The eigenvalues are found by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
For large eigenvalues, the intersection get closer and closer to $\lambda_n = \pi k$ where $k\in\mathbb{Z}^+$ and $k > 15$.
Is this correct? Without arbitrary picking a $k$, is there a better way to determine a $k$ for when $\lambda\to\pi k$?
 
Physics news on Phys.org
dwsmith said:
The eigenvalues are found by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
For large eigenvalues, the intersection get closer and closer to $\lambda_n = \pi k$ where $k\in\mathbb{Z}^+$ and $k > 15$.
Is this correct? Without arbitrary picking a $k$, is there a better way to determine a $k$ for when $\lambda\to\pi k$?

\[\tan\lambda_n = \frac{1}{\lambda_n}\]

\[\Rightarrow \lambda_n=k\pi+\tan^{-1}\frac{1}{\lambda_n}\mbox{ where }k\in\mathbb{Z}\]

For large positive or negative values of \(\lambda_n\), \(\tan^{-1}\frac{1}{\lambda_n}\approx 0\)

\[\therefore \lambda_n\approx k\pi\mbox{ where }k\in\mathbb{Z}\]

The larger \(k\) value you use the approximation will be better. Choosing a bound for \(k\) depends on the accuracy that you need for your approximation.
 
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top