MHB Closed form solution for large eigenvalues

Dustinsfl
Messages
2,217
Reaction score
5
The eigenvalues are found by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
For large eigenvalues, the intersection get closer and closer to $\lambda_n = \pi k$ where $k\in\mathbb{Z}^+$ and $k > 15$.
Is this correct? Without arbitrary picking a $k$, is there a better way to determine a $k$ for when $\lambda\to\pi k$?
 
Physics news on Phys.org
dwsmith said:
The eigenvalues are found by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
For large eigenvalues, the intersection get closer and closer to $\lambda_n = \pi k$ where $k\in\mathbb{Z}^+$ and $k > 15$.
Is this correct? Without arbitrary picking a $k$, is there a better way to determine a $k$ for when $\lambda\to\pi k$?

\[\tan\lambda_n = \frac{1}{\lambda_n}\]

\[\Rightarrow \lambda_n=k\pi+\tan^{-1}\frac{1}{\lambda_n}\mbox{ where }k\in\mathbb{Z}\]

For large positive or negative values of \(\lambda_n\), \(\tan^{-1}\frac{1}{\lambda_n}\approx 0\)

\[\therefore \lambda_n\approx k\pi\mbox{ where }k\in\mathbb{Z}\]

The larger \(k\) value you use the approximation will be better. Choosing a bound for \(k\) depends on the accuracy that you need for your approximation.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top