Co- and Contravariance

Click For Summary

Discussion Overview

The discussion centers on the concepts of co- and contravariance in the context of special relativity, particularly focusing on the mathematical representation of four-vectors and the implications of index placement. Participants explore the physical significance of upper and lower indices, the role of the Minkowski metric, and the relationship between vectors and co-vectors.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about the physical meaning of multiplying a four-vector by the Minkowski metric and the differences between upper and lower indices.
  • Another participant notes that many students find this topic confusing and suggests that understanding may improve with concepts from general relativity, such as curvilinear coordinates.
  • A later reply compares the distinction between vectors and co-vectors to the difference between row and column vectors in matrix notation, suggesting that the physical interpretation is largely mathematical.
  • One participant introduces the idea of duality, explaining that a co-vector is a linear map from a vector to a scalar, and emphasizes the role of the metric tensor in converting between vectors and co-vectors.
  • Another participant draws an analogy between the concepts of frequency and period, noting that both represent the same information but in different forms, which change in opposite directions under coordinate transformations.

Areas of Agreement / Disagreement

Participants generally agree that the topic is complex and often confusing, but multiple competing views remain regarding the physical implications of co- and contravariance and the interpretation of the Minkowski metric.

Contextual Notes

Some participants mention the need for clearer definitions and understanding of the metric tensor and its applications in special relativity, indicating that the discussion may be limited by varying levels of familiarity with the mathematical concepts involved.

deuteron
Messages
64
Reaction score
14
TL;DR
What physical meaning does covariance and contravariance have?
Hi,
I am very confused about the mathematics related to special relativity.
I have understood, that a four-vector with an upper index has the form:
$$A^\mu = (A^0 , A^1, A^2, A^3)$$
where lowering the index would make the indices other than the ##0##th negative:
$$A_\mu = (A_0, -A^1, -A^2, -A^3)$$
In order to lower the index, we would need to multiply the four-vector with the Minkowski metric.

I understand, that the four vector ##x^\mu = (ct, x^1,x^2,x^3)## gives the temporal and spatial positions of an event.
What I don't understand is what "multiplying by the Minkowski metric" physically does to the four vector, and what the physical difference between ##x_0## and ##x^0## is. What physical difference does it make when the four-vector has a lower index or an upper index?

I am in general very confused about this, so any recommendation of a source on the mathematics of special relativity is very welcome
 
Physics news on Phys.org
That is a very good question. In fact, many (many!) students are confused by this. In fact, it is such a good question I might just take the time to write up a PF Insight on the topic …

In the meantime, know that you are not alone and that it is very confusing. It will be somewhat clearer if you go to curvilinear coordinates or curved spacetimes (ie, GR) as there the distinction between the tangent space and its dual is clearer.
 
  • Like
Likes   Reactions: PeterDonis, fresh_42 and martinbn
Orodruin said:
That is a very good question. In fact, many (many!) students are confused by this. In fact, it is such a good question I might just take the time to write up a PF Insight on the topic …

In the meantime, know that you are not alone and that it is very confusing. It will be somewhat clearer if you go to curvilinear coordinates or curved spacetimes (ie, GR) as there the distinction between the tangent space and its dual is clearer.
In case you write that Insight, can you please also explain what makes the d'Alembert operator "relativistic" and different from the classical ##\frac 1 c \frac {\partial^2}{\partial t^2}-\Delta## that we have in the "classical" wave equation?..
 
deuteron said:
TL;DR Summary: What physical meaning does covariance and contravariance have?

Hi,
I am very confused about the mathematics related to special relativity.
I have understood, that a four-vector with an upper index has the form:
$$A^\mu = (A^0 , A^1, A^2, A^3)$$
where lowering the index would make the indices other than the ##0##th negative:
$$A_\mu = (A_0, -A^1, -A^2, -A^3)$$
In order to lower the index, we would need to multiply the four-vector with the Minkowski metric.

I understand, that the four vector ##x^\mu = (ct, x^1,x^2,x^3)## gives the temporal and spatial positions of an event.
What I don't understand is what "multiplying by the Minkowski metric" physically does to the four vector, and what the physical difference between ##x_0## and ##x^0## is. What physical difference does it make when the four-vector has a lower index or an upper index?

I am in general very confused about this, so any recommendation of a source on the mathematics of special relativity is very welcome

It's rather like the difference between a row vector and a column vector in matrix notation, if that helps any. Graphically, vectors, represented with a superscript like ##A^i##, are usually represented as little arrows. co-vectors, represented with a subscript, like ##A_i##, are usually represented by a "stack of parallel plates". A co-vector maps a vector to a scalar, in the graphical representation this is the number of parallel plates the line with the arrow pierces.

As long as you have a metric tensor, you can convert vectors to co-vectors, the metric tensor maps vectors to co-vectors as you mentioned, and the inverse of the metric tensor, ##g^{uv}##, maps co-vectors to vectors. In matrix notation, there is no metric tensor, the operation of taking the transpose makes a vector a co-vector and vica-vera.

I would say it's largely mathematical question rather than a physical one, though there are some standardized conventions as to which one is used in which circumstance.

If the stack-of-plates notion isn't familiar, https://math.stackexchange.com/questions/1078427/how-to-visualize-1-forms-and-p-forms has some illustrations.

Mathematically a co-vector, or "one-form", is a linear map from a vector to a scalar. The relation between vectors and co-vectors is known as duality - each is the "dual" of the other.
 
Ben Crowell (former mentor here) noted that the concept is similar to frequency and period. Both encode the same information but in different ways, and if you change coordinates (e.g. change from measuring time in seconds to minutes) they change in opposite directions. And the product of the two is invariant under coordinate change.
 
  • Like
Likes   Reactions: weirdoguy, Nugatory, Sagittarius A-Star and 2 others

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K