# What is Contravariant: Definition and 94 Discussions

In multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis.
In physics, a basis is sometimes thought of as a set of reference axes. A change of scale on the reference axes corresponds to a change of units in the problem. For instance, by changing scale from meters to centimeters (that is, dividing the scale of the reference axes by 100), the components of a measured velocity vector are multiplied by 100. Vectors exhibit this behavior of changing scale inversely to changes in scale to the reference axes and consequently are called contravariant. As a result, vectors often have units of distance or distance with other units (as, for example, velocity has units of distance divided by time).
In contrast, covectors (also called dual vectors) typically have units of the inverse of distance or the inverse of distance with other units. An example of a covector is the gradient, which has units of a spatial derivative, or distance−1. The components of covectors change in the same way as changes to scale of the reference axes and consequently are called covariant.
A third concept related to covariance and contravariance is invariance. An example of a physical observable that does not change with a change of scale on the reference axes is the mass of a particle, which has units of mass (that is, no units of distance). The single, scalar value of mass is independent of changes to the scale of the reference axes and consequently is called invariant.
Under more general changes in basis:

A contravariant vector or tangent vector (often abbreviated simply as vector, such as a direction vector or velocity vector) has components that contra-vary with a change of basis to compensate. That is, the matrix that transforms the vector components must be the inverse of the matrix that transforms the basis vectors. The components of vectors (as opposed to those of covectors) are said to be contravariant. Examples of vectors with contravariant components include the position of an object relative to an observer, or any derivative of position with respect to time, including velocity, acceleration, and jerk. In Einstein notation, contravariant components are denoted with upper indices as in

v

=

v

i

e

i

{\displaystyle \mathbf {v} =v^{i}\mathbf {e} _{i}}
(note: implicit summation over index "i")
A covariant vector or cotangent vector (often abbreviated as covector) has components that co-vary with a change of basis. That is, the components must be transformed by the same matrix as the change of basis matrix. The components of covectors (as opposed to those of vectors) are said to be covariant. Examples of covariant vectors generally appear when taking a gradient of a function. In Einstein notation, covariant components are denoted with lower indices as in

e

i

(

v

)
=

v

i

.

{\displaystyle \mathbf {e} _{i}(\mathbf {v} )=v_{i}.}
Curvilinear coordinate systems, such as cylindrical or spherical coordinates, are often used in physical and geometric problems. Associated with any coordinate system is a natural choice of coordinate basis for vectors based at each point of the space, and covariance and contravariance are particularly important for understanding how the coordinate description of a vector changes by passing from one coordinate system to another.
The terms covariant and contravariant were introduced by James Joseph Sylvester in 1851 in the context of associated algebraic forms theory. Tensors are objects in multilinear algebra that can have aspects of both covariance and contravariance.
In the lexicon of category theory, covariance and contravariance are properties of functors; unfortunately, it is the lower-index objects (covectors) that generically have pullbacks, which are contravariant, while the upper-index objects (vectors) instead have pushforwards, which are covariant. This terminological conflict may be avoided by calling contravariant functors "cofunctors"—in accord with the "covector" terminology, and continuing the tradition of treating vectors as the concept and covectors as the coconcept.

View More On Wikipedia.org

2. ### Contravariant derivative of a tensor field in terms of generalized coordinates?

1. The laplacian is defined such that $$\vec{\nabla} \cdot \vec{\nabla} V = \nabla_i \nabla^i V = \frac{1}{\sqrt{Z}} \frac{\partial}{\partial Z^{i}} \left(\sqrt{Z} Z^{ij} \frac{\partial V}{\partial Z^{j}}\right)$$ (##Z## is the determinant of the metric tensor, ##Z_i## is a generalized...
3. ### I Deriving Contravariant Form of Levi-Civita Tensor

The covariant form for the Levi-Civita is defined as ##\varepsilon_{i,j,k}:=\sqrt{g}\epsilon_{i,j,k}##. I want to show from this definition that it's contravariant form is given by ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##.My attemptWhat I have tried is to express this tensor...
4. ### B Regarding Contravarient Vector Transformations

Hello, I have a question regarding the contravarient transformation of vectors. So the formula: V'n = dx'n / dxm Vm So in words, the nth basis vector in the ' frame of reference over the mth (where m is the summation term) basis vector in the original frame of reference times the mth...
5. ### I Is the Wavefunction a Contravariant Component?

I've heard that the wavefunction as a function of x has units of square root of inverse distance, but I haven't heard an intuitive description of why this is aside from that the math works out when you integrate to get the probability. But aside from the math working out, I'm hoping to get a...
6. ### I Trouble understanding contravariant transformations for vectors

Hey, so I've been studying some math on my own and I'm really confused by this one bit. I understand what contravariant components of a vector are, but I don't understand the ways in which they transform under a change of coordinate system. For instance, let's say we have two coordinate...
7. E

### B A covariant vs contravariant vector?

We have a basis {##\mathbf{e}_1##, ##\mathbf{e}_2##, ##\dots##} and the corresponding dual basis {##\mathbf{e}^1##, ##\mathbf{e}^2##, ##\dots##}. I learned that a vector ##\vec{V}## can be expressed in either basis, and the components in each basis are called the contravariant and covariant...
8. ### I Transformation of the contravariant and covariant components of a tensor

I have read many GR books and many posts regarding the title of this post, but despite that, I still feel the need to clarify some things. Based on my understanding, the contravariant component of a vector transforms as, ##A'^\mu = [L]^\mu~ _\nu A^\nu## the covariant component of a vector...
9. ### I Covariant and contravariant tensors

Is there a purpose of using covariant or contravariant tensors other than convenience or ease in a particular coordinate system? Is it possible to just use one and stick to one? Also what is the meaning of mixed components used in physics , is there a physical significance in choosing one over...

29. ### Tensors with both covariant and contravariant components

Hey all, I'm just starting into GR and learning about tensors. The idea of fully co/contravariant tensors makes sense to me, but I don't understand how a single tensor could have both covariant AND contravariant indices/components, since each component is represented by a number in each index...
30. ### Fundamental and contravariant representations

The invariant of SL(2,C) is proven to be invariant under the action of the group by the following \epsilon'_{\alpha\beta} = N_{\alpha}^{\rho}N_{\beta}^{\sigma}\epsilon_{\rho\sigma}=\epsilon_{\alpha\beta}detN=\epsilon_{\alpha\beta} The existence of an invariant of this form (with two indices...
31. ### Difference Between Covariant & Contravariant Vectors Explained

Can someone explain to me what is the difference between covariant and contravariant vectors ? Thank You
32. ### Why Do Covariant and Contravariant Vectors Use Opposite Indexing?

I am reading a notes about tensor when I came across this which the notes did not elaborate more on it. As a result I don't quite understand why. Here it is : " Note that we mark the covariant basis vectors with an upper index and the contravariant basis vectors with a lower index. This may...
33. ### Covariant and Contravariant Tensors

Not sure where to post this thread. That being said, can someone explain to me simply what covariant and contravariant tensors are and how covariant and contravariant transformation works? My understanding of it from googling these two mathematical concepts is that when you change the basis of...
34. ### Lorentz Transform on Covariant Vector (Lahiri QFT 1.5)

Homework Statement Given that ##x_\mu x^\mu = y_\mu y^\mu## under a Lorentz transform (##x^\mu \rightarrow y^\mu##, ##x_\mu \rightarrow y_\mu##), and that ##x^\mu \rightarrow y^\mu = \Lambda^\mu{}_\nu x^\nu##, show that ##x_\mu \rightarrow y_\mu = \Lambda_\mu{}^\nu x_\nu##. Homework Equations...
35. ### MHB The Contravariant Functor Hom_R( _ , X)

I am reading Paul E. Bland's book, "Rings and Their Modules". I am trying to understand Section 3.1 on categories and need help in understanding the contravariant functor \text{Hom}_R(\_, X) as described in Bland, Example 13 in Ch. 3: Categories (page 76). Example 13 in Ch. 3 reads as follows...
36. ### GR vs SR: Reconciling Contravariant & Covariant Vector Components

I am trying to reconcile the definition of contravariant and covariant components of a vector between Special Relativity and General Relativity. In GR I understand the difference is defined by the way that the vector components transform under a change in coordinate systems. In SR it seems...
37. ### Tensors: switching between mixed and contravariant components

I'm working on the electromagnetic stress-energy tensor and I've found this in a book by Landau-Lifshitz: T^{i}_{k} = -\frac{1}{4\pi} \frac{\partial A_{\ell}}{\partial x^{i}} F^{k\ell}+\frac{1}{16\pi}\delta^{k}_{i} F_{\ell m} F^{\ell m} Becomes: T^{ik} = -\frac{1}{4\pi}...
38. ### Derivatives of contravariant and covariant vectors

Can someone explain why the derivative with respect to a contravariant coordinate transforms as a covariant 4-vector and the derivative with respect to a covariant coordinate transforms as a contravariant 4-vector.
39. ### QFT (derivative the covariant and contravariant fields)

Hi, please help me .. How can I derivative covariant and contravariant fields? as in the attached picture Thanks.. http://www.gulfup.com/?tNXcaN w.r.t alpha
40. ### Contravariant and covariant indices

When we write contravariant and covariant indices, for example for the Lorentz transformation, does it matter if we write \Lambda^\mu\,_\nu or \Lambda^\mu_\nu ? i.e. if the \nu index is to the right of the \mu or they are at the same place with respect to left-right?
41. ### Contravariant and Covariant Vectors

I remember I have read somewhere that contravariant/covariant vectors correspond to polar/axial vectors in physics, respectively. Examples for polar/axial vectors are position, velocity,... and angular momentum, torque,..., respectively. Is this right? Can I prove that, say, any axial...
42. ### Covariant and Contravariant Coordinate

Hellow everybody! A simples question: is it correct the graphic representation for covariant (x₀, y₀) and contravariant (x⁰, y⁰) coordinates of black vector?
43. ### How Would Physics Change Without Covariant and Contravariant Tensors?

If the notions of covariant and contravariant tensors were not introduced,what would happen?E.g. what form will the Einstein E.q. Guv=8πTuv be changed into ?
44. ### I understand energy-momentum tensor with contravariant indices, where

I understand energy-momentum tensor with contravariant indices, where I think I get T^{αβ}, but how do I derive the same result for T_{αβ}? Why are the contravariant vectors simply changed to covariant ones, and why does it work in Einstein's equation?
45. ### Covariant Versus Contravariant Vectors

I'm confused about the difference between a contravariant and covariant vector. Some books and articles seem to say that there really is no difference, that a vector is a vector, and can be written in terms of contravariant components associated with a particular basis, or can be written in...
46. ### Covariant and Contravariant Components of a Vector

I think this may be a simple yes or no question. I am currently reading a book Vector and Tensor Analysis by Borisenko. In it he introduces a reciprocal basis \vec{e_{i}} (where i=1,2,3) for a basis \vec{e^{i}} (where i is an index, not an exponent) that may or may not be orthogonal...
47. ### Newtonian force as a covariant or contravariant quantity

I recently came across a very cool book called Div, Grad, and Curl are Dead by Burke. This is apparently a bit of a cult classic among mathematicians, not to be confused with Div, Grad, Curl, and All That. Burke was killed in a car accident before he could put the book in final, publishable...
48. ### Covariant and contravariant vector

Will anyone help me to under stand the covariant and contravariant vector ? And can anyone show me the derivation of dr=(dr/dx)dx + (dr/dy)dy + (dr/dz)dz
49. ### Covariant and Contravariant components in Oblique System

Homework Statement In the oblique coordinate system K' defined in class the position vector r′ can be written as: r'=a\hat{e'}_{1}+b\hat{e'}_{2} Are a and b the covariant (perpendicular) or contravariant (parallel) components of r′? Why? Give an explanation based on vectors’ properties...
50. ### Requesting Clear Description of Contravariant vs Covariant vectors

Ok, so here's my problem. I just graduated with a mathematics degree and am going full force into a physics graduate program. I'm taking a course called mathematical methods for physicists, in which the first subject is tensors. Everyone else seems to be comfortable with the material, but me...