MHB Collin's question via email about a Laplace Transform

Click For Summary
The discussion centers on finding the Laplace Transform F(s) for the function f(t) defined with a Heaviside function and a sine term. It highlights the need to manipulate the exponential term to align with the Heaviside function's argument. The final expression for F(s) is derived as e^(24 - 4s) multiplied by the Laplace Transform of the sine function, adjusted for the shift in the variable s. The result simplifies to e^(24 - 4s) * [3 / ((s - 6)² + 9)]. The calculations and transformations are confirmed to be correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find $\displaystyle \begin{align*} F\left( s \right) \end{align*}$ if $\displaystyle \begin{align*} f\left( t \right) = \mathrm{H}\,\left( t - 4 \right) \, \sin{ \left[ 3\,\left( t - 4 \right) \right] } \, \mathrm{e}^{6\,t} \end{align*}$

As the Heaviside function is a function of t - 4, that means all other terms must also be functions of t - 4. The sine function is, but the exponential isn't. However with a little manipulation, we get

$\displaystyle \begin{align*} f\left( t\right) &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) + 24} \\ &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \\ \\ F\left( s \right) &= \mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \right\} \\ &= \mathrm{e}^{24}\,\mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{24}\,\mathrm{e}^{-4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \,\mathrm{e}^{6\,t} \right\} \\ &= \mathrm{e}^{24 - 4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \right\} _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \,\left[ \frac{3}{s^2 + 3^2} \right] _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \, \left[ \frac{3}{\left( s - 6 \right) ^2 + 9} \right] \end{align*}$
 
Mathematics news on Phys.org
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...