MHB Collin's question via email about a Laplace Transform

AI Thread Summary
The discussion centers on finding the Laplace Transform F(s) for the function f(t) defined with a Heaviside function and a sine term. It highlights the need to manipulate the exponential term to align with the Heaviside function's argument. The final expression for F(s) is derived as e^(24 - 4s) multiplied by the Laplace Transform of the sine function, adjusted for the shift in the variable s. The result simplifies to e^(24 - 4s) * [3 / ((s - 6)² + 9)]. The calculations and transformations are confirmed to be correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find $\displaystyle \begin{align*} F\left( s \right) \end{align*}$ if $\displaystyle \begin{align*} f\left( t \right) = \mathrm{H}\,\left( t - 4 \right) \, \sin{ \left[ 3\,\left( t - 4 \right) \right] } \, \mathrm{e}^{6\,t} \end{align*}$

As the Heaviside function is a function of t - 4, that means all other terms must also be functions of t - 4. The sine function is, but the exponential isn't. However with a little manipulation, we get

$\displaystyle \begin{align*} f\left( t\right) &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) + 24} \\ &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \\ \\ F\left( s \right) &= \mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \right\} \\ &= \mathrm{e}^{24}\,\mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{24}\,\mathrm{e}^{-4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \,\mathrm{e}^{6\,t} \right\} \\ &= \mathrm{e}^{24 - 4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \right\} _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \,\left[ \frac{3}{s^2 + 3^2} \right] _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \, \left[ \frac{3}{\left( s - 6 \right) ^2 + 9} \right] \end{align*}$
 
Mathematics news on Phys.org
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top