MHB Collin's question via email about a Laplace Transform

AI Thread Summary
The discussion centers on finding the Laplace Transform F(s) for the function f(t) defined with a Heaviside function and a sine term. It highlights the need to manipulate the exponential term to align with the Heaviside function's argument. The final expression for F(s) is derived as e^(24 - 4s) multiplied by the Laplace Transform of the sine function, adjusted for the shift in the variable s. The result simplifies to e^(24 - 4s) * [3 / ((s - 6)² + 9)]. The calculations and transformations are confirmed to be correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find $\displaystyle \begin{align*} F\left( s \right) \end{align*}$ if $\displaystyle \begin{align*} f\left( t \right) = \mathrm{H}\,\left( t - 4 \right) \, \sin{ \left[ 3\,\left( t - 4 \right) \right] } \, \mathrm{e}^{6\,t} \end{align*}$

As the Heaviside function is a function of t - 4, that means all other terms must also be functions of t - 4. The sine function is, but the exponential isn't. However with a little manipulation, we get

$\displaystyle \begin{align*} f\left( t\right) &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) + 24} \\ &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \\ \\ F\left( s \right) &= \mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \right\} \\ &= \mathrm{e}^{24}\,\mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{24}\,\mathrm{e}^{-4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \,\mathrm{e}^{6\,t} \right\} \\ &= \mathrm{e}^{24 - 4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \right\} _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \,\left[ \frac{3}{s^2 + 3^2} \right] _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \, \left[ \frac{3}{\left( s - 6 \right) ^2 + 9} \right] \end{align*}$
 
Mathematics news on Phys.org
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top