MHB Collin's question via email about a Laplace Transform

Click For Summary
The discussion centers on finding the Laplace Transform F(s) for the function f(t) defined with a Heaviside function and a sine term. It highlights the need to manipulate the exponential term to align with the Heaviside function's argument. The final expression for F(s) is derived as e^(24 - 4s) multiplied by the Laplace Transform of the sine function, adjusted for the shift in the variable s. The result simplifies to e^(24 - 4s) * [3 / ((s - 6)² + 9)]. The calculations and transformations are confirmed to be correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find $\displaystyle \begin{align*} F\left( s \right) \end{align*}$ if $\displaystyle \begin{align*} f\left( t \right) = \mathrm{H}\,\left( t - 4 \right) \, \sin{ \left[ 3\,\left( t - 4 \right) \right] } \, \mathrm{e}^{6\,t} \end{align*}$

As the Heaviside function is a function of t - 4, that means all other terms must also be functions of t - 4. The sine function is, but the exponential isn't. However with a little manipulation, we get

$\displaystyle \begin{align*} f\left( t\right) &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) + 24} \\ &= \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \\ \\ F\left( s \right) &= \mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \,\mathrm{e}^{24} \right\} \\ &= \mathrm{e}^{24}\,\mathcal{L}\,\left\{ \mathrm{H}\,\left( t - 4 \right) \,\sin{ \left[ 3\,\left( t - 4 \right) \right] } \,\mathrm{e}^{6\,\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{24}\,\mathrm{e}^{-4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \,\mathrm{e}^{6\,t} \right\} \\ &= \mathrm{e}^{24 - 4\,s}\,\mathcal{L}\,\left\{ \sin{ \left( 3\,t \right) } \right\} _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \,\left[ \frac{3}{s^2 + 3^2} \right] _{s \to s - 6} \\ &= \mathrm{e}^{24 - 4\,s} \, \left[ \frac{3}{\left( s - 6 \right) ^2 + 9} \right] \end{align*}$
 
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
Replies
2
Views
7K