MHB Collin's questions via email about Inverse Laplace Transforms

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 + 20\,s + 26}{\left( s + 3 \right) ^3} \right\} \end{align*}$

As the denominator is a function of s + 3, it suggests a shift had to have been utilised. As such, we also need the numerator to be a function of s + 3...

Let $\displaystyle \begin{align*} u = s + 3 \end{align*}$, then $\displaystyle \begin{align*} s = u-3 \end{align*}$ and thus

$\displaystyle \begin{align*} 5\,s^2 + 20\,s + 26 &= 5\,\left( u - 3 \right) ^2 + 20\,\left( u - 3 \right) + 26 \\ &= 5\,\left( u^2 - 6\,u + 9 \right) + 20\,u - 60 + 26 \\ &= 5\,u^2 - 30\,u + 45 + 20\,u - 34 \\ &= 5\,u^2 - 10\,u + 11 \\ &= 5\,\left( s + 3 \right) ^2 - 10\,\left( s + 3 \right) + 11 \end{align*}$

and thus

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 + 20\,s + 26 }{\left( s + 3 \right) ^3} \right\} &= \mathcal{L}^{-1}\,\left\{ \frac{5\,\left( s + 3 \right) ^2 - 10\,\left( s + 3 \right) + 11}{\left( s + 3 \right) ^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 - 10\,s + 11}{s^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{5}{s} - \frac{10}{s^2} + \frac{11}{s^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\left( 5\,\mathcal{L}^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} - 10\,\mathcal{L}^{-1}\,\left\{ \frac{1!}{s^{1 + 1}} \right\} + \frac{11}{2}\,\mathcal{L}^{-1}\,\left\{ \frac{2!}{s^{2 + 1}} \right\} \right) \\ &= \mathrm{e}^{-3\,t}\,\left( 5\,t^0 - 10\,t^1 + \frac{11}{2}\,t^2 \right) \\ &= \mathrm{e}^{-3\,t} \,\left( 5 - 10\,t + \frac{11}{2}\,t^2 \right) \end{align*}$
Evaluate $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ 7\log{ \left( \frac{7 + s}{s} \right) } \right\} \end{align*}$

As logarithms have a very simple integral - becoming a rational function, I would make use of this rule:

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ \frac{f\left( t \right) }{t} \right\} = \int_s^{\infty}{ F\left( u \right) \,\mathrm{d}u } \end{align*}$

Now we should note that

$\displaystyle \begin{align*} \int{\left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } &= \log{ \left| 7 + u \right| } - \log{ \left| u \right| } + C \\ &= \log{ \left| \frac{7 + u}{u} \right| } + C \end{align*}$

and thus (since $\displaystyle \begin{align*} s > 0 \end{align*}$)

$\displaystyle \begin{align*} \int_s^{\infty}{ \left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } &= \lim_{b \to \infty} \int_s^b{ \left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } \\ &= \lim_{b \to \infty} \left[ \log{ \left( \frac{7 + u}{u} \right) } \right] _s^b \\ &= \lim_{b \to \infty} \left[ \log{\left( \frac{7 + b}{b} \right) } \right] - \log{ \left( \frac{7 + s}{s} \right) } \\ &= \lim_{b \to \infty} \left[ \log{ \left( \frac{7}{b} + 1 \right) } \right] - \log{ \left( \frac{7 + s}{s} \right) } \\ &= \log{ \left( 0 + 1 \right) } - \log{ \left( \frac{7 + s}{s} \right) } \\ &= 0 -\log{ \left( \frac{7 + s}{s} \right) } \\ &= -\log{ \left( \frac{7 + s}{s} \right) } \end{align*}$

So this suggests that $\displaystyle \begin{align*} F\left( s \right) = - \left( \frac{1}{7 + s} - \frac{1}{s} \right) = \frac{1}{s} - \frac{1}{7 + s} \end{align*}$, therefore

$\displaystyle \begin{align*} f\left( t \right) &= \mathcal{L}^{-1}\,\left\{ \frac{1}{s} - \frac{1}{7 + s} \right\} \\ &= \mathcal{L}^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} - \mathrm{e}^{-7\,t}\,\mathcal{ L }^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} \\ &= t^0 - \mathrm{e}^{-7\,t}\,t^0 \\ &= 1 - \mathrm{e}^{-7\,t} \end{align*}$

so finally $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ 7 \log{ \left( \frac{7 + s}{s} \right) } \right\} &= 7\,\left( \frac{1 - \mathrm{e}^{-7\,t}}{t} \right) \end{align*}$.
 
Mathematics news on Phys.org
This is correct. Ty been wanting to study integral transforms recently.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top