MHB Collin's questions via email about Inverse Laplace Transforms

AI Thread Summary
The discussion focuses on evaluating the inverse Laplace transform of the function given by the expression (5s² + 20s + 26)/((s + 3)³). A substitution is made by letting u = s + 3, which simplifies the numerator to a function of u. The inverse transform is then expressed in terms of an exponential function multiplied by a polynomial in t. Additionally, the evaluation of the inverse Laplace transform of 7 log((7 + s)/s) is discussed, leading to the result of 7(1 - e^(-7t))/t. The calculations and transformations demonstrate the application of properties of Laplace transforms and logarithmic functions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 + 20\,s + 26}{\left( s + 3 \right) ^3} \right\} \end{align*}$

As the denominator is a function of s + 3, it suggests a shift had to have been utilised. As such, we also need the numerator to be a function of s + 3...

Let $\displaystyle \begin{align*} u = s + 3 \end{align*}$, then $\displaystyle \begin{align*} s = u-3 \end{align*}$ and thus

$\displaystyle \begin{align*} 5\,s^2 + 20\,s + 26 &= 5\,\left( u - 3 \right) ^2 + 20\,\left( u - 3 \right) + 26 \\ &= 5\,\left( u^2 - 6\,u + 9 \right) + 20\,u - 60 + 26 \\ &= 5\,u^2 - 30\,u + 45 + 20\,u - 34 \\ &= 5\,u^2 - 10\,u + 11 \\ &= 5\,\left( s + 3 \right) ^2 - 10\,\left( s + 3 \right) + 11 \end{align*}$

and thus

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 + 20\,s + 26 }{\left( s + 3 \right) ^3} \right\} &= \mathcal{L}^{-1}\,\left\{ \frac{5\,\left( s + 3 \right) ^2 - 10\,\left( s + 3 \right) + 11}{\left( s + 3 \right) ^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 - 10\,s + 11}{s^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{5}{s} - \frac{10}{s^2} + \frac{11}{s^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\left( 5\,\mathcal{L}^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} - 10\,\mathcal{L}^{-1}\,\left\{ \frac{1!}{s^{1 + 1}} \right\} + \frac{11}{2}\,\mathcal{L}^{-1}\,\left\{ \frac{2!}{s^{2 + 1}} \right\} \right) \\ &= \mathrm{e}^{-3\,t}\,\left( 5\,t^0 - 10\,t^1 + \frac{11}{2}\,t^2 \right) \\ &= \mathrm{e}^{-3\,t} \,\left( 5 - 10\,t + \frac{11}{2}\,t^2 \right) \end{align*}$
Evaluate $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ 7\log{ \left( \frac{7 + s}{s} \right) } \right\} \end{align*}$

As logarithms have a very simple integral - becoming a rational function, I would make use of this rule:

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ \frac{f\left( t \right) }{t} \right\} = \int_s^{\infty}{ F\left( u \right) \,\mathrm{d}u } \end{align*}$

Now we should note that

$\displaystyle \begin{align*} \int{\left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } &= \log{ \left| 7 + u \right| } - \log{ \left| u \right| } + C \\ &= \log{ \left| \frac{7 + u}{u} \right| } + C \end{align*}$

and thus (since $\displaystyle \begin{align*} s > 0 \end{align*}$)

$\displaystyle \begin{align*} \int_s^{\infty}{ \left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } &= \lim_{b \to \infty} \int_s^b{ \left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } \\ &= \lim_{b \to \infty} \left[ \log{ \left( \frac{7 + u}{u} \right) } \right] _s^b \\ &= \lim_{b \to \infty} \left[ \log{\left( \frac{7 + b}{b} \right) } \right] - \log{ \left( \frac{7 + s}{s} \right) } \\ &= \lim_{b \to \infty} \left[ \log{ \left( \frac{7}{b} + 1 \right) } \right] - \log{ \left( \frac{7 + s}{s} \right) } \\ &= \log{ \left( 0 + 1 \right) } - \log{ \left( \frac{7 + s}{s} \right) } \\ &= 0 -\log{ \left( \frac{7 + s}{s} \right) } \\ &= -\log{ \left( \frac{7 + s}{s} \right) } \end{align*}$

So this suggests that $\displaystyle \begin{align*} F\left( s \right) = - \left( \frac{1}{7 + s} - \frac{1}{s} \right) = \frac{1}{s} - \frac{1}{7 + s} \end{align*}$, therefore

$\displaystyle \begin{align*} f\left( t \right) &= \mathcal{L}^{-1}\,\left\{ \frac{1}{s} - \frac{1}{7 + s} \right\} \\ &= \mathcal{L}^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} - \mathrm{e}^{-7\,t}\,\mathcal{ L }^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} \\ &= t^0 - \mathrm{e}^{-7\,t}\,t^0 \\ &= 1 - \mathrm{e}^{-7\,t} \end{align*}$

so finally $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ 7 \log{ \left( \frac{7 + s}{s} \right) } \right\} &= 7\,\left( \frac{1 - \mathrm{e}^{-7\,t}}{t} \right) \end{align*}$.
 
Mathematics news on Phys.org
This is correct. Ty been wanting to study integral transforms recently.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top