MHB Collin's questions via email about Inverse Laplace Transforms

Click For Summary
The discussion focuses on evaluating the inverse Laplace transform of the function given by the expression (5s² + 20s + 26)/((s + 3)³). A substitution is made by letting u = s + 3, which simplifies the numerator to a function of u. The inverse transform is then expressed in terms of an exponential function multiplied by a polynomial in t. Additionally, the evaluation of the inverse Laplace transform of 7 log((7 + s)/s) is discussed, leading to the result of 7(1 - e^(-7t))/t. The calculations and transformations demonstrate the application of properties of Laplace transforms and logarithmic functions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 + 20\,s + 26}{\left( s + 3 \right) ^3} \right\} \end{align*}$

As the denominator is a function of s + 3, it suggests a shift had to have been utilised. As such, we also need the numerator to be a function of s + 3...

Let $\displaystyle \begin{align*} u = s + 3 \end{align*}$, then $\displaystyle \begin{align*} s = u-3 \end{align*}$ and thus

$\displaystyle \begin{align*} 5\,s^2 + 20\,s + 26 &= 5\,\left( u - 3 \right) ^2 + 20\,\left( u - 3 \right) + 26 \\ &= 5\,\left( u^2 - 6\,u + 9 \right) + 20\,u - 60 + 26 \\ &= 5\,u^2 - 30\,u + 45 + 20\,u - 34 \\ &= 5\,u^2 - 10\,u + 11 \\ &= 5\,\left( s + 3 \right) ^2 - 10\,\left( s + 3 \right) + 11 \end{align*}$

and thus

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 + 20\,s + 26 }{\left( s + 3 \right) ^3} \right\} &= \mathcal{L}^{-1}\,\left\{ \frac{5\,\left( s + 3 \right) ^2 - 10\,\left( s + 3 \right) + 11}{\left( s + 3 \right) ^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{5\,s^2 - 10\,s + 11}{s^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{5}{s} - \frac{10}{s^2} + \frac{11}{s^3} \right\} \\ &= \mathrm{e}^{-3\,t}\,\left( 5\,\mathcal{L}^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} - 10\,\mathcal{L}^{-1}\,\left\{ \frac{1!}{s^{1 + 1}} \right\} + \frac{11}{2}\,\mathcal{L}^{-1}\,\left\{ \frac{2!}{s^{2 + 1}} \right\} \right) \\ &= \mathrm{e}^{-3\,t}\,\left( 5\,t^0 - 10\,t^1 + \frac{11}{2}\,t^2 \right) \\ &= \mathrm{e}^{-3\,t} \,\left( 5 - 10\,t + \frac{11}{2}\,t^2 \right) \end{align*}$
Evaluate $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ 7\log{ \left( \frac{7 + s}{s} \right) } \right\} \end{align*}$

As logarithms have a very simple integral - becoming a rational function, I would make use of this rule:

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ \frac{f\left( t \right) }{t} \right\} = \int_s^{\infty}{ F\left( u \right) \,\mathrm{d}u } \end{align*}$

Now we should note that

$\displaystyle \begin{align*} \int{\left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } &= \log{ \left| 7 + u \right| } - \log{ \left| u \right| } + C \\ &= \log{ \left| \frac{7 + u}{u} \right| } + C \end{align*}$

and thus (since $\displaystyle \begin{align*} s > 0 \end{align*}$)

$\displaystyle \begin{align*} \int_s^{\infty}{ \left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } &= \lim_{b \to \infty} \int_s^b{ \left( \frac{1}{7 + u} - \frac{1}{u} \right) \,\mathrm{d}u } \\ &= \lim_{b \to \infty} \left[ \log{ \left( \frac{7 + u}{u} \right) } \right] _s^b \\ &= \lim_{b \to \infty} \left[ \log{\left( \frac{7 + b}{b} \right) } \right] - \log{ \left( \frac{7 + s}{s} \right) } \\ &= \lim_{b \to \infty} \left[ \log{ \left( \frac{7}{b} + 1 \right) } \right] - \log{ \left( \frac{7 + s}{s} \right) } \\ &= \log{ \left( 0 + 1 \right) } - \log{ \left( \frac{7 + s}{s} \right) } \\ &= 0 -\log{ \left( \frac{7 + s}{s} \right) } \\ &= -\log{ \left( \frac{7 + s}{s} \right) } \end{align*}$

So this suggests that $\displaystyle \begin{align*} F\left( s \right) = - \left( \frac{1}{7 + s} - \frac{1}{s} \right) = \frac{1}{s} - \frac{1}{7 + s} \end{align*}$, therefore

$\displaystyle \begin{align*} f\left( t \right) &= \mathcal{L}^{-1}\,\left\{ \frac{1}{s} - \frac{1}{7 + s} \right\} \\ &= \mathcal{L}^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} - \mathrm{e}^{-7\,t}\,\mathcal{ L }^{-1}\,\left\{ \frac{0!}{s^{0 + 1}} \right\} \\ &= t^0 - \mathrm{e}^{-7\,t}\,t^0 \\ &= 1 - \mathrm{e}^{-7\,t} \end{align*}$

so finally $\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ 7 \log{ \left( \frac{7 + s}{s} \right) } \right\} &= 7\,\left( \frac{1 - \mathrm{e}^{-7\,t}}{t} \right) \end{align*}$.
 
Mathematics news on Phys.org
This is correct. Ty been wanting to study integral transforms recently.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
10K