Collision Problem - A gain of kinetic energy?

AI Thread Summary
The discussion centers on a collision between two blocks, where block A slides into block B on a frictionless surface. It is established that the collision is inelastic, meaning kinetic energy is lost to other forms of energy while momentum is conserved. However, calculations reveal an increase in kinetic energy after the collision, which raises questions about the validity of the scenario. The calculated kinetic energy before the collision is 24.3 J, while after the collision it is 36.1 J, indicating an inconsistency. Ultimately, the numbers presented do not represent a feasible physical situation, suggesting potential errors in the problem setup or calculations.
eurekameh
Messages
209
Reaction score
0
In Fig. 9-64, block A (mass 1.1 kg) slides into block B (mass 2.9 kg), along a frictionless surface. The directions of velocities before and after the collision are indicated; the corresponding speeds are vAi = 5.6 m/s, vBi = 2.2 m/s, and vBf = 4.9 m/s. What is velocity vAf (including sign, where positive denotes motion to the right)?

I believe that this collision is inelastic and not elastic, because kinetic energy is lost to other forms of energy, correct? And so momentum is conserved, kinetic energy is not?

I conserved momentum and found the final velocity of block A. However, when I calculated the kinetic energy before and after the collision, I found that the kinetic energy after the collision is greater than the kinetic energy before the collision. How is this possible?

Edit: No external forces are present.
 
Physics news on Phys.org
can you show us the work you did.
 
Momentum before = Momentum after
(1.1)(5.6) + (2.9)(2.2) = (1.1)(vAf) + (2.9)(4.9)
I found vAf.
But when I calculated the kinetic energy before and after the collision, I got an increase in kinetic energy, as in : kinetic energy before collision < kinetic energy after collision.

Kinetic energy before collision:
(1/2)(1.1)(5.6)^2 + (1/2)(2.9)(2.2)^2 = 24.3 J.

Kinetic energy after collision, using vAf = -1.52, found when conserving momentum:
(1/2)(1.1)(-1.52)^2 + (1/2)(2.9)(4.9)^2 = 36.1 J.

My question is this: Is it possible to have an increase in kinetic energy when there are no apparent external forces acting on the system of the two colliding blocks? Or are my calculations faulty? Or is the problem itself faulty?
Thanks for the responses.
 
well, we seem to have an impossible situation here. and in fact we do. if you look at the change in KE of B, it is bigger than the whole of A's KE coming in. this is impossible. these numbers do not correspond to a possible physical situation.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top