MHB Comaximal Ideals in a Principal Ideal Domain

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Domain
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Prove that in a prinicpal ideal domain, two ideals (a) and (b) are comaximal if and only if a greatest common divisor of a and b (in which case (a) and (b) are said to be coprine or realtively prime)

Note: (1) Two ideals A and B of the ring R are said to be comaximal if A + B = R

(2) Let I and J be two ideals of R
The sum of I and J is defined as I+J = \{ a+b | a \in I, b \in J \}
 
Physics news on Phys.org
Re: Comaximal Ideas in a Principal Ideal Domain

I think you've found the answer on MHF.
 
Re: Comaximal Ideas in a Principal Ideal Domain

Well ... I am still working on the problem ... but I will be using your guidance regarding the way to progress

At my day job at the moment ... but will use your hint when I return to the problem

Thanks again

Peter
 
by def, two elements a,b in a PID are relatively prime if there exist, $m_1,m_2 \in $, such
that 1 = $m_1a+m_2b$

now if $a,b$ are relatively prime then

$\{r_1a + r_2b | r_1,r_2 \in R\}$, contains 1, if an ideal contains 1, then that ideal is identical to R.

Now <a> + <b> = $\{g_1a + g_2b | g_1,g_2 \in R\}$
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
923
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
777
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 5 ·
Replies
5
Views
839
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K