MHB Comaximal Ideals in a Principal Ideal Domain

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Domain
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Prove that in a prinicpal ideal domain, two ideals (a) and (b) are comaximal if and only if a greatest common divisor of a and b (in which case (a) and (b) are said to be coprine or realtively prime)

Note: (1) Two ideals A and B of the ring R are said to be comaximal if A + B = R

(2) Let I and J be two ideals of R
The sum of I and J is defined as I+J = \{ a+b | a \in I, b \in J \}
 
Physics news on Phys.org
Re: Comaximal Ideas in a Principal Ideal Domain

I think you've found the answer on MHF.
 
Re: Comaximal Ideas in a Principal Ideal Domain

Well ... I am still working on the problem ... but I will be using your guidance regarding the way to progress

At my day job at the moment ... but will use your hint when I return to the problem

Thanks again

Peter
 
by def, two elements a,b in a PID are relatively prime if there exist, $m_1,m_2 \in $, such
that 1 = $m_1a+m_2b$

now if $a,b$ are relatively prime then

$\{r_1a + r_2b | r_1,r_2 \in R\}$, contains 1, if an ideal contains 1, then that ideal is identical to R.

Now <a> + <b> = $\{g_1a + g_2b | g_1,g_2 \in R\}$
 
Last edited:
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top