MHB Combinations of groups question

Raerin
Messages
46
Reaction score
0
Combinations of groups question [edited question]

The camera club has 5 members and the mathematics club has 8. There is only one member common to both clubs. In how many ways could a committee of four people be formed with at least one member from each club?

I am confused about the "one member common to both clubs" part and that the committee needs to have at least one member from each group. So when calculating do you do it as 5 members in camera club or 4 members since there's one person in both clubs?
 
Last edited:
Mathematics news on Phys.org
"One member common to both clubs" is someone who is in both, so that will affect the question "How many people are there total?". At first glance it might seem like there are 5+8=13 people but how many are there really?

To get a 4 person committee you could do this the by taking people from both groups like so: 1 and 3, 2 and 2 and 3 and 1.

That will get you started. I'll help you address the tricky part if you can do up to here. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top