Combinatorial Algorithm for Sorting Adjacency Matrices in Polynomial Time

  • Thread starter Thread starter secondprime
  • Start date Start date
  • Tags Tags
    Algorithm
Click For Summary
The discussion centers on the combinatorial algorithm for sorting adjacency matrices of regular graphs in polynomial time. It introduces a matrix A that can be divided into four submatrices based on the adjacency of a vertex x in graph G. Key points include the properties of matrices C and D, where C is always larger than D and the sorting of these matrices is assumed to take polynomial time. The problem posed is whether a polynomial time algorithm exists to sort C such that the rearranged matrix B equals A. The conversation also references a previous thread discussing related complexity analysis, indicating that while both threads share a foundation, this one addresses a more specific scenario.
secondprime
Messages
47
Reaction score
0
Given a matrix A of a regular graph G. The matrix A can be divided into 4 sub matrices based on adjacency of vertex ##x \in G##.

## A_x## is the symmetric matrix of the graph ##(G-x)##, where ##C## is the symmetric matrix of the graph created by vertices of ##(G-x)## which are adjacent to ##x## and ##D## is the symmetric matrix of the graph created by vertices of ##(G-x)## which are not adjacent to ##x##.

http://i.stack.imgur.com/qL2rD.jpg

## A_x = \left( \begin{array}{cc}

C & E \\

E^{T} & D\\

\end{array} \right) ## It should be noted, that-
1. Interchanging/swapping any two rows (or columns) of ##C## does not affect matrix ##D## (and vice versa).
2. Any change in ##C## or ##D## or both ##C## and ##D## changes matrix ##E##.
**Problem:** If some vertices of ##G## is rearranged(i.e. permuted), ##A## will be different, say, this new matrix is ##B##. Again, matrix ##B## can be divided into 4 sub matrices based on adjacency of vertex ##x \in G## and ## B_x## can be obtained.Assume-

1. ##C## is always a regular graph’s matrix and bigger than ##D##.

2. There exists an algorithm that always order ##D##(for a vertex ##x \in G##) takes ##K## times(assumed to be polynomial).

3. Each row of E has different permutation, i.e. , rows might have same number of 1's but there is no two rows which can be permuted to each other. Say, ##r_x , r_y## are two rows, there is no permutation ##\sigma## so that, ## \sigma r_x=\sigma r_y##. *So, there is no way ##E## to be a zero matrix or matrix of all 1's or a matrix has some identical rows.* For ##n## vertices there will be total ##n## numbers of ##C,D##, each of them will take ##K##(assumed to be polynomial) time to sort. If Each ##C## takes ##f## time to sort, then the total complexity will be ##n\times K\times f##.
**according to above 3 assumptions, Does there exist a polynomial time algorithm to sort ##C## so that ##B=A##? i.e. Is there a polynomial##f## ?**
 
Physics news on Phys.org
that discussion was incomplete and was the general case, this more specific. It would easier, if this thread is concluded.
 
Consider ##G## as a strongly ##k## regular graph G(srg(##n,k,\lambda ,\mu##);##\lambda ,\mu >0##).
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K