A gardener collected 17 apples...

Click For Summary

Homework Help Overview

The discussion revolves around a problem involving a gardener who collected 17 apples, each with a weight represented by variables. The problem requires demonstrating that all apples have equal weight based on a series of equations derived from removing apples and comparing the sums of the remaining weights. The subject area includes linear algebra and determinants.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore various mathematical formulations and proofs related to the problem, including matrix representations and properties of determinants. Questions arise regarding the assumptions made about the weights and the structure of the matrix.

Discussion Status

The discussion is ongoing, with participants offering different approaches and questioning the validity of assumptions. Some suggest testing smaller cases to gain insights, while others reflect on the implications of the matrix structure and its eigenvalues. There is no explicit consensus yet, but productive lines of reasoning are being explored.

Contextual Notes

Participants note the importance of having equal numbers of +1 and -1 in each row of the matrix, as this condition is crucial for the uniqueness of the solution. There are also considerations about how changing the problem's constraints may affect the outcomes.

  • #31
PeroK said:
I've learned something new. The permament of a matrix:

https://en.wikipedia.org/wiki/Permanent_(mathematics)

This simplifies the counting, since the number of terms in the determinant for ##M## is the permanent of the matrix ##M'##, where all the ##\pm 1## entries are ##1##. And, the recurrence relation for the permanent of ##M'## is easy to show:
$$a(n) = (n-1)[a(n-1) + a(n-2)] = na(n-1) + (-1)^n$$This is clearly odd when ##n## is even.
Yes, new to me and good to know, especially for problems involving counting.

It explicitly shows the formula I've arrived to:

1700133862843.png


I suspect that because permanent of a matrix is basis dependent, its use in physics is limited.
 
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
  • #32
Let ##X## be an ##n\times n## matrix with even numbers on the diagonal, and odd numbers everywhere else. Then ##\det X = n+1\pmod 2##.

Pf. Consider ##X## modulo ##2##. Then its diagonal is zero and there are ones everywhere else. Let ##S## be an ##n\times n## matrix whose every entry is ##1##. The eigenvalues of ##S## are precisely ##n## and ##0##. Therefore, ##S-I_n## has eigenvalues ##n-1## and ##-1##. Hence ##\det (S-I_n) = (n-1)^a(-1)^b##. Thus, the parity of ##\det X## is ##n+1\pmod{2}##. ##_{\blacksquare}##

Now, let ##n+1\geqslant 3## be odd and ##A## a square matrix of dimension ##n+1## such that its diagonal is zero and there are equal number of ##\pm 1## on each row. Since ##A(1,1,\ldots, 1)^t=0##, we have that ##\mathrm{rank}A \leqslant n##. Consider the ##n\times n## submatrix obtained from first ##n## rows and columns. By the previous claim, its determinant is an odd number, hence ##\mathrm{rank}A = n##.

Thus, in the initial problem, the vector ##(1,1,\ldots ,1)## generates the kernel of ##A##. Hence, every apple must have the same weight.
 
Last edited:
  • Like
Likes   Reactions: PeroK, WWGD and Hill
  • #33
nuuskur said:
Let ##X## be an ##n\times n## matrix with even numbers on the diagonal, and odd numbers everywhere else. Then ##\det X = n+1\pmod 2##.

Pf. Consider ##X## modulo ##2##. Then its diagonal is zero and there are ones everywhere else. Let ##S## be a matrix whose every entry is ##1##. The eigenvalues of ##S## are precisely ##n## and ##0##. Therefore, ##S-I_n## has eigenvalues ##n-1## and ##-1##. Hence ##\det (S-I_n) = (n-1)^a(-1)^b##. Thus, the parity of ##\det X## is ##n+1\pmod{2}##. ##_{\blacksquare}##

Now, let ##n+1\geqslant 3## be odd and ##A## a square matrix of dimension ##n+1## such that its diagonal is zero and there are equal number of ##\pm 1## on each row. Since ##A(1,1,\ldots, 1)=0##, we have that ##\mathrm{rank}A \leqslant n##. Consider the ##n\times n## submatrix obtained from first ##n## rows and columns. By the previous claim, its determinant is an odd number, hence ##\mathrm{rank}A = n##.

Thus, in the initial problem, the vector ##(1,1,\ldots ,1)## generates the kernel of ##A##. Hence, every apple must have the same weight.
Thank you. This is much shorter and more elegant than my solution. No explicit counting needed. Beautiful!
 

Similar threads

  • · Replies 69 ·
3
Replies
69
Views
10K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K