- #1

Yankel

- 395

- 0

I am trying to solve a problem related to natural numbers. The solution is based on the pigeonhole principle, however I can't see the connection.

The is the problem:

Choose 12 two digit numbers. Divide each by 11 and write down the residue (i.e. do the modulu operation). Group the residues in different sets, in such a way that all numbers with the same residue are in the same set.

Can you find two numbers that when subtracted from one another (bigger - smaller) gives a two digit number with identical digits ? (e.g. 57-24=33).

Now choose a new set of 12 numbers. Can you find such numbers now ?

Are you findings random or is there a reason ? Try to write down a rule and to prove it.

---------------------------------------------------------------------------------------------------------------------------

So I have chosen 12 numbers and did all the residues. I have noticed that two numbers in the same set, i.e. two numbers having the same residue will give a subtraction which is a number with identical digits.

What I don't see, is what's the connection to the pigeonhole principle, what is the rule I am suppose to find and how to prove it using the pigeonhole principle.

Thank you in advance !

P.S.

My chosen example was:

{33} {12} {24, 57} {25} {81} {17,39} {73,95} {41} {64}