Combine Hamiltonians of two different bases

  • Context: Graduate 
  • Thread starter Thread starter TheDestroyer
  • Start date Start date
  • Tags Tags
    Bases
Click For Summary
SUMMARY

This discussion focuses on combining Hamiltonians from two different bases in quantum mechanics, specifically for systems represented by states |ψ⟩ and |φ⟩. The total Hamiltonian is constructed using the tensor product of the individual Hamiltonians, represented as H₁ ⊗ I + I ⊗ H₂ + Hₑₙₜ, where H₁ and H₂ are the Hamiltonians of the respective systems. The Wigner-D rotation matrices are introduced to manage angular momentum states, particularly for hyperfine states with total angular momentum F=3 and F=4. The challenge lies in correctly applying these matrices to the combined system.

PREREQUISITES
  • Understanding of quantum mechanics and Hamiltonian operators
  • Familiarity with tensor products in Hilbert spaces
  • Knowledge of Wigner-D rotation matrices for angular momentum
  • Experience with matrix algebra and manipulation
NEXT STEPS
  • Study the construction of Hamiltonians using tensor products in quantum mechanics
  • Learn about Wigner-D matrices and their applications in angular momentum theory
  • Explore the implications of hyperfine splitting in atomic physics
  • Investigate interaction Hamiltonians and their role in quantum systems
USEFUL FOR

Quantum physicists, researchers in atomic and molecular physics, and students studying advanced quantum mechanics concepts.

TheDestroyer
Messages
401
Reaction score
1
I'm trying to solve a dynamical quantum mechanics problem related to the Cs atom, but I'm having trouble in the following, and I'm afraid I'm doing it wrong.

Say I have the matrix form of the Hamiltonian on a basis for a system | \psi \rangle to be H_\psi, and another system with bases | \phi \rangle with Hamiltonian H_\phi.

Now I would like to introduce interactions between the first and seconed systems, which will become (I suppose) | \psi \phi\rangle.

1) How do I combine those hamiltonians in matrix formalism before adding the new hamiltonian that introduces the interactions?

2) Say the first and second system are complete angular momenta basis in Zeeman eigen-states (so |F_1 m_{F_1} \rangle and |F_2 m_{F_2}\rangle). If the Wigner-D rotation matrix for the first Hamiltonian/basis is \mathcal{D}^{F_1}_{m_{F_1} m_{F_1}^\prime}, and for the second system is \mathcal{D}^{F_2}_{m_{F_2} m_{F_2}^\prime}. How can I rotate each system and then combine them to introduce interactions between them?

Thank you for any efforts.
 
Physics news on Phys.org
TheDestroyer said:
Say I have the matrix form of the Hamiltonian on a basis for a system | \psi \rangle to be H_\psi, and another system with bases | \phi \rangle with Hamiltonian H_\phi.

Now I would like to introduce interactions between the first and seconed systems, which will become (I suppose) | \psi \phi\rangle.

You suppose correct. For this situation we create a Hilbert Space by the tensor product of basis of the two spaces containing Hamiltonians \hat{H}_\psi and \hat{H}_\phi(which are spanned by | \psi \rangle and | \phi \rangle respectively).

TheDestroyer said:
1) How do I combine those hamiltonians in matrix formalism before adding the new hamiltonian that introduces the interactions?

So the new Hilbert Space is now spanned by basis | \psi_i \phi_j\rangle or | \psi_i\rangle \otimes |\phi_j\rangle (sum over i and j). The Hamiltonian of the system now becomes \hat{H}_\psi \otimes I + I \otimes \hat{H}_\phi + \hat{H}_{int}. If you are not aware of this algebra, I would recommend Quantum Computation and Quantum Information by Neilsen and Chaung, Chapter 2.
 
Last edited:
Thank you so much for your answer. Let me though put an example to make this clear, because I got some result that I don't believe. Say I have the Hamiltonian matrices H_1 and H_2

H_1=\left(<br /> \begin{array}{cccc}<br /> \text{s1} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{s2} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{s3} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{s4} \\<br /> \end{array}<br /> \right)

H_2=\left(<br /> \begin{array}{ccc}<br /> \text{t1} &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{t2} &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{t3} \\<br /> \end{array}<br /> \right)

So now we have:

H_1 \otimes I_3 = \left(<br /> \begin{array}{cccccccccccc}<br /> \text{s1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{s1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{s1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{s2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4} \\<br /> \end{array}<br /> \right)

and

H_2 \otimes I_3 = \left(<br /> \begin{array}{cccccccccccc}<br /> \text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{t3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t3} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t1} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t2} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t3} \\<br /> \end{array}<br /> \right)

So now the new Hamiltonian is

H_1 \otimes I_3 + I_4 \otimes H_2 = \left(<br /> \begin{array}{cccccccccccc}<br /> \text{s1}+\text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{s1}+\text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{s1}+\text{t3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{s2}+\text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s2}+\text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s2}+\text{t3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3}+\text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3}+\text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3}+\text{t3} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4}+\text{t1} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4}+\text{t2} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4}+\text{t3} \\<br /> \end{array}<br /> \right)

Is that how it's done?
 
You have done correctly with some typos.

H_1=\left(<br /> \begin{array}{cccc}<br /> \text{s1} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{s2} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{s3} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{s4} \\<br /> \end{array}<br /> \right),

and define identity operator on first space

I_1=\left(<br /> \begin{array}{cccc}<br /> 1 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 1 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 1 \\<br /> \end{array}<br /> \right).
Similarly
H_2=\left(<br /> \begin{array}{ccc}<br /> \text{t1} &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{t2} &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{t3} \\<br /> \end{array}<br /> \right),
and identity operator on second space
I_2=\left(<br /> \begin{array}{ccc}<br /> 1 &amp; 0 &amp; 0 \\<br /> 0 &amp; 1 &amp; 0 \\<br /> 0 &amp; 0 &amp; 1 \\<br /> \end{array}<br /> \right).

The total Hamiltonian now should be \hat{H}_1 \otimes I_2 + I_1 \otimes \hat{H}_2 + \hat{H}_{int}. We can evaluate terms as follows

H_1 \otimes I_2 = \left(<br /> \begin{array}{cccccccccccc}<br /> \text{s1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{s1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{s1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{s2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s3} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{s4} \\<br /> \end{array}<br /> \right),
as you have done correctly.
Second term is
I_1 \otimes H_2 = \left(<br /> \begin{array}{cccccccccccc}<br /> \text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; \text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; \text{t3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; \text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t3} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t1} &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t2} &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t3} &amp; 0 &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t1} &amp; 0 &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t2} &amp; 0 \\<br /> 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; 0 &amp; \text{t3} \\<br /> \end{array}<br /> \right).
(you did correctly but it seems lot of typesetting made you overlook the order I_1 \otimes H_2 :)).
And you can add these matrices to get total Hamiltonian matrix (without interaction).
 
Hmmmmmmm... Thank you so much. Though I thought this approach would solve my problem, but apparently it doesn't.

I have Hyperfine states with F=3,4 (where F=I+J is the sum of the total angular momentum and the nuclear spin), and I want to separate them, do a rotation with Wigner-D matrices, and combine them back. Do you know how this could be done?
 
TheDestroyer said:
I have Hyperfine states with F=3,4 (where F=I+J is the sum of the total angular momentum and the nuclear spin), and I want to separate them, do a rotation with Wigner-D matrices, and combine them back. Do you know how this could be done?

I am sorry, I don't know what Wigner-D matrices are.
 
Thank you, I appreciate your help so far. You could though (if you're interested) look at this further. Wigner-D matrices are simply the matrices that provide rotations in the angular momentum basis with Euler angles.

So you have a basis of F=3 and m_F=-3,...,3, the Wigner-D matrix will be D_{m_F m_F^\prime}^{F=3}, where m_F, m_F^\prime will be the matrix elements, and we'll have 7\times 7=49 matrix elements for this basis.

That's the idea simply, so now, with that given, I know how to rotate the basis F=3 or F=4, but I don't know how to rotate them both when they're combined. You see where my problem is?
 
TheDestroyer said:
That's the idea simply, so now, with that given, I know how to rotate the basis F=3 or F=4, but I don't know how to rotate them both when they're combined. You see where my problem is?
Please give one demonstration. Say I need to rotate basis F=3. How will I proceed?
 
Thank you for your time. Wigner D-Matrix for that case will be the following, starting from the eigen-vector |F=3;m_F=-3 \rangle to |F=3;m_F=3 \rangle

<br /> D^{F=3}=\left(<br /> \begin{array}{ccccccc}<br /> e^{-3 i \alpha -3 i \gamma } \cos ^6\left(\frac{\beta }{2}\right) &amp; -\sqrt{6} e^{-3 i \alpha -2 i \gamma } \cos ^5\left(\frac{\beta }{2}\right) \sin \left(\frac{\beta }{2}\right) &amp; \sqrt{15} e^{-3 i \alpha -i \gamma } \cos ^4\left(\frac{\beta }{2}\right) \sin ^2\left(\frac{\beta }{2}\right) &amp; -2 \sqrt{5} e^{-3 i \alpha } \cos ^3\left(\frac{\beta }{2}\right) \sin ^3\left(\frac{\beta }{2}\right) &amp; \sqrt{15} e^{i \gamma -3 i \alpha } \cos ^2\left(\frac{\beta }{2}\right) \sin ^4\left(\frac{\beta }{2}\right) &amp; -\sqrt{6} e^{2 i \gamma -3 i \alpha } \cos \left(\frac{\beta }{2}\right) \sin ^5\left(\frac{\beta }{2}\right) &amp; e^{3 i \gamma -3 i \alpha } \sin ^6\left(\frac{\beta }{2}\right) \\<br /> \sqrt{6} e^{-2 i \alpha -3 i \gamma } \cos ^5\left(\frac{\beta }{2}\right) \sin \left(\frac{\beta }{2}\right) &amp; \frac{1}{2} e^{-2 i \alpha -2 i \gamma } \cos ^4\left(\frac{\beta }{2}\right) (6 \cos (\beta )-4) &amp; -\frac{1}{2} \sqrt{\frac{5}{2}} e^{-2 i \alpha -i \gamma } \cos ^3\left(\frac{\beta }{2}\right) (6 \cos (\beta )-2) \sin \left(\frac{\beta }{2}\right) &amp; \sqrt{30} e^{-2 i \alpha } \cos ^2\left(\frac{\beta }{2}\right) \cos (\beta ) \sin ^2\left(\frac{\beta }{2}\right) &amp; -\frac{1}{2} \sqrt{\frac{5}{2}} e^{i \gamma -2 i \alpha } \cos \left(\frac{\beta }{2}\right) (6 \cos (\beta )+2) \sin ^3\left(\frac{\beta }{2}\right) &amp; \frac{1}{2} e^{2 i \gamma -2 i \alpha } (6 \cos (\beta )+4) \sin ^4\left(\frac{\beta }{2}\right) &amp; -\sqrt{6} e^{3 i \gamma -2 i \alpha } \cos \left(\frac{\beta }{2}\right) \sin ^5\left(\frac{\beta }{2}\right) \\<br /> \sqrt{15} e^{-i \alpha -3 i \gamma } \cos ^4\left(\frac{\beta }{2}\right) \sin ^2\left(\frac{\beta }{2}\right) &amp; \frac{1}{2} \sqrt{\frac{5}{2}} e^{-i \alpha -2 i \gamma } \cos ^3\left(\frac{\beta }{2}\right) (6 \cos (\beta )-2) \sin \left(\frac{\beta }{2}\right) &amp; e^{-i \alpha -i \gamma } \cos ^2\left(\frac{\beta }{2}\right) \left(\frac{15}{4} (\cos (\beta )-1)^2+5 (\cos (\beta )-1)+1\right) &amp; -\frac{2 e^{-i \alpha } \cos \left(\frac{\beta }{2}\right) \left(\frac{15}{4} (\cos (\beta )-1)^2+\frac{15}{2} (\cos (\beta )-1)+3\right) \sin \left(\frac{\beta }{2}\right)}{\sqrt{3}} &amp; e^{i \gamma -i \alpha } \left(\frac{15}{4} (\cos (\beta )-1)^2+10 (\cos (\beta )-1)+6\right) \sin ^2\left(\frac{\beta }{2}\right) &amp; -\frac{1}{2} \sqrt{\frac{5}{2}} e^{2 i \gamma -i \alpha } \cos \left(\frac{\beta }{2}\right) (6 \cos (\beta )+2) \sin ^3\left(\frac{\beta }{2}\right) &amp; \sqrt{15} e^{3 i \gamma -i \alpha } \cos ^2\left(\frac{\beta }{2}\right) \sin ^4\left(\frac{\beta }{2}\right) \\<br /> 2 \sqrt{5} e^{-3 i \gamma } \cos ^3\left(\frac{\beta }{2}\right) \sin ^3\left(\frac{\beta }{2}\right) &amp; \sqrt{30} e^{-2 i \gamma } \cos ^2\left(\frac{\beta }{2}\right) \cos (\beta ) \sin ^2\left(\frac{\beta }{2}\right) &amp; \frac{2 e^{-i \gamma } \cos \left(\frac{\beta }{2}\right) \left(\frac{15}{4} (\cos (\beta )-1)^2+\frac{15}{2} (\cos (\beta )-1)+3\right) \sin \left(\frac{\beta }{2}\right)}{\sqrt{3}} &amp; \frac{1}{2} \left(5 \cos ^3(\beta )-3 \cos (\beta )\right) &amp; -\frac{2 e^{i \gamma } \cos \left(\frac{\beta }{2}\right) \left(\frac{15}{4} (\cos (\beta )-1)^2+\frac{15}{2} (\cos (\beta )-1)+3\right) \sin \left(\frac{\beta }{2}\right)}{\sqrt{3}} &amp; \sqrt{30} e^{2 i \gamma } \cos ^2\left(\frac{\beta }{2}\right) \cos (\beta ) \sin ^2\left(\frac{\beta }{2}\right) &amp; -2 \sqrt{5} e^{3 i \gamma } \cos ^3\left(\frac{\beta }{2}\right) \sin ^3\left(\frac{\beta }{2}\right) \\<br /> \sqrt{15} e^{i \alpha -3 i \gamma } \cos ^2\left(\frac{\beta }{2}\right) \sin ^4\left(\frac{\beta }{2}\right) &amp; \frac{1}{2} \sqrt{\frac{5}{2}} e^{i \alpha -2 i \gamma } \cos \left(\frac{\beta }{2}\right) (6 \cos (\beta )+2) \sin ^3\left(\frac{\beta }{2}\right) &amp; e^{i \alpha -i \gamma } \left(\frac{15}{4} (\cos (\beta )-1)^2+10 (\cos (\beta )-1)+6\right) \sin ^2\left(\frac{\beta }{2}\right) &amp; \frac{2 e^{i \alpha } \cos \left(\frac{\beta }{2}\right) \left(\frac{15}{4} (\cos (\beta )-1)^2+\frac{15}{2} (\cos (\beta )-1)+3\right) \sin \left(\frac{\beta }{2}\right)}{\sqrt{3}} &amp; e^{i \alpha +i \gamma } \cos ^2\left(\frac{\beta }{2}\right) \left(\frac{15}{4} (\cos (\beta )-1)^2+5 (\cos (\beta )-1)+1\right) &amp; -\frac{1}{2} \sqrt{\frac{5}{2}} e^{i \alpha +2 i \gamma } \cos ^3\left(\frac{\beta }{2}\right) (6 \cos (\beta )-2) \sin \left(\frac{\beta }{2}\right) &amp; \sqrt{15} e^{i \alpha +3 i \gamma } \cos ^4\left(\frac{\beta }{2}\right) \sin ^2\left(\frac{\beta }{2}\right) \\<br /> \sqrt{6} e^{2 i \alpha -3 i \gamma } \cos \left(\frac{\beta }{2}\right) \sin ^5\left(\frac{\beta }{2}\right) &amp; \frac{1}{2} e^{2 i \alpha -2 i \gamma } (6 \cos (\beta )+4) \sin ^4\left(\frac{\beta }{2}\right) &amp; \frac{1}{2} \sqrt{\frac{5}{2}} e^{2 i \alpha -i \gamma } \cos \left(\frac{\beta }{2}\right) (6 \cos (\beta )+2) \sin ^3\left(\frac{\beta }{2}\right) &amp; \sqrt{30} e^{2 i \alpha } \cos ^2\left(\frac{\beta }{2}\right) \cos (\beta ) \sin ^2\left(\frac{\beta }{2}\right) &amp; \frac{1}{2} \sqrt{\frac{5}{2}} e^{2 i \alpha +i \gamma } \cos ^3\left(\frac{\beta }{2}\right) (6 \cos (\beta )-2) \sin \left(\frac{\beta }{2}\right) &amp; \frac{1}{2} e^{2 i \alpha +2 i \gamma } \cos ^4\left(\frac{\beta }{2}\right) (6 \cos (\beta )-4) &amp; -\sqrt{6} e^{2 i \alpha +3 i \gamma } \cos ^5\left(\frac{\beta }{2}\right) \sin \left(\frac{\beta }{2}\right) \\<br /> e^{3 i \alpha -3 i \gamma } \sin ^6\left(\frac{\beta }{2}\right) &amp; \sqrt{6} e^{3 i \alpha -2 i \gamma } \cos \left(\frac{\beta }{2}\right) \sin ^5\left(\frac{\beta }{2}\right) &amp; \sqrt{15} e^{3 i \alpha -i \gamma } \cos ^2\left(\frac{\beta }{2}\right) \sin ^4\left(\frac{\beta }{2}\right) &amp; 2 \sqrt{5} e^{3 i \alpha } \cos ^3\left(\frac{\beta }{2}\right) \sin ^3\left(\frac{\beta }{2}\right) &amp; \sqrt{15} e^{3 i \alpha +i \gamma } \cos ^4\left(\frac{\beta }{2}\right) \sin ^2\left(\frac{\beta }{2}\right) &amp; \sqrt{6} e^{3 i \alpha +2 i \gamma } \cos ^5\left(\frac{\beta }{2}\right) \sin \left(\frac{\beta }{2}\right) &amp; e^{3 i \alpha +3 i \gamma } \cos ^6\left(\frac{\beta }{2}\right) \\<br /> \end{array}<br /> \right)<br />

where the angles are the Euler angles, and the matrix is a unitary matrix, so I can use it to transform any Hamiltonian in the F=3 basis as follows:

<br /> H^\prime=D^\dagger H D<br />

The calculation of that matrix is another story, I got that from Mathematica. So my question is: assume I know that matrix for F=3 and F=4, and I know the Hamiltonians for both F=3 and F=4. How can I calculate the combined Hamiltonian after applying an arbitrary (but equal for each) transformations?

In other words: Say I use the matrix to rotate the F=3 Hamiltonian and F=4 Hamiltonian by some angles (a,b,c). Now I have 2 new Hamiltonians for each case. How can I combine them both?
 
Last edited:
  • #10
The hamiltonian matrix is
\hat{H} = \hat{H}_1 \otimes I_2 + I_1 \otimes \hat{H}_2 + \hat{H}_{int}. The rotation matrix in the new space should be defined as
D = D^{F=3} \otimes I_2 + I_1 \otimes D^{F=4}. And now you can use your formula
<br /> \hat{H}^\prime=D^\dagger \hat{H} D.<br />
 
Last edited:
  • #11
If I do this product the result's side length will become 7*9=63 elements... while my combined system from F=3 and F=4 has only 7+9=16 elements, since F=3 has side-length 2*3+1=7 and F=4 has 2*4+1=9.

So here's the problem right now.
 
  • #12
TheDestroyer said:
If I do this product the result's side length will become 7*9=63 elements... while my combined system from F=3 and F=4 has only 7+9=16 elements.
This seems to be about the difference between the direct product and the direct sum. The dimension of the product is n*m while the dimension of the sum is n+m. You get the direct sum if you write the initial matrices on the diagonal of the resulting matrix and fill the off-diagonals with zeros.

If you combine two systems, you need the direct product. But what you want to do is to combine different possible states of a single system, don't you? There, the direct sum seems to be the right thing to me.

I've never used Wigner's matrix but I remember that I found Sakurai really insightful on it at the time. Maybe it helps you.

/edit: typo
 
Last edited:
  • #13
TheDestroyer said:
while my combined system from F=3 and F=4 has only 7+9=16 elements, since F=3 has side-length 2*3+1=7 and F=4 has 2*4+1=9.
Your combined system also has 69 elements. Consider the first term of Hamiltonian. H (7*7 matrix) of system 1 tensored with Identity of system 2 (9*9 matrix) giving you a total of 63*63 matrix. Similarly the second term is 63*63 matrix.
 
  • #14
Thank you for your answers, guys.

Like Kith said, I need to add components and not have the product. A 63*63 matrix is redundant, where it gives me, for example, a state | F=3,F=4,m_F=3,m_F=-4 \rangle, which is definitely wrong. What I'm doing is adding components... please consider re-assessing the situation.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K