Simple S matrix example in Coleman's lectures on QFT

  • #1
Glenn Rowe
Gold Member
24
0
TL;DR Summary
Simple S matrix example in Coleman's lectures on QFT
In Coleman's QFT lectures, I'm confused by equation 7.57. To give the background, Coleman is trying to calculate the scattering matrix (S matrix) for a situation in which the Hamiltonian is given by
$$H=H_{0}+f\left(t,T,\Delta\right)H_{I}\left(t\right)$$
where ##H_{0}## is the free Hamiltonian, ##H_{I}## is the interaction, and ##f## is a function that turns the interaction on only for a time interval ##T## around ##t=0##. ##\Delta## determines the rate at which the interaction is switched on and off.
Since the interaction is off for times in the distant past and future, the state at these times will be the exact state determined by the free Hamiltonian ##H_{0}##. Coleman calls this state (for the distant past) ##\left|\psi\left(-\infty\right)\right\rangle ^{\text{in}}## and claims that it is given by
$$\left|\psi\left(-\infty\right)\right\rangle ^{\text{in}}=\lim_{t^{\prime}\rightarrow-\infty}e^{iH_{0}t^{\prime}}e^{-iHt^{\prime}}\left|\psi\right\rangle =\lim_{t^{\prime}\rightarrow-\infty}U_{I}\left(0,t^{\prime}\right)\left|\psi\right\rangle $$
where ##U_{I}## is the evolution operator in the interaction picture. He doesn't specify what the state ##\left|\psi\right\rangle## is, but I can't make sense of this equation no matter what I assume about it. Is it the state in the Schrodinger picture or the interaction picture? What time is the state supposed to be at?
If it's the Schrodinger picture (as seems to be the case, as he says this when calculating ##S## in equation 7.59) and the time is ##t=0##, then the ##e^{-iHt^{\prime}}## operator would evolve the state to time ##t^{\prime}##, but then what is the additional ##e^{iH_{0}t^{\prime}}## for?
Finally, how does he get the last equality above? According to Coleman's definition of ##U_{I}## (his equation 7.31) we should have
$$U_{I}\left(t,0\right)=e^{iH_{0}t}e^{-iHt}$$
where the ##t## and the 0 are swapped from its occurrence in the above equation.
Anyone have any thoughts? Thanks.
 

Answers and Replies

  • #2
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,463
13,378
I hope Coleman didn't really mean that ##f## is a step function, because then he's generally in big trouble. I don't believe that Coleman really made such a claim. It's really important to do this right and introduce "adiabatic switching" as Gell-Mann and Low did to define the S-matrix in a consistent way. A very good explanation in the QFT context is given in Bjorken and Drell, Quantum Field theory.
 
  • Like
Likes Demystifier
  • #3
Demystifier
Science Advisor
Insights Author
Gold Member
13,417
5,848
I hope Coleman didn't really mean that ##f## is a step function, because then he's generally in big trouble.
What exactly goes wrong if one takes a step function?
 
  • #4
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,463
13,378
Have a look at this:

https://arxiv.org/abs/1310.5019

I think this is a nice example underlining the importance of a correct and smooth "adiabatic switching" (both on and off!) in QFT.

I ordered Coleman's book, because this must simply be a gem. Unfortunately it'll take more than 4 weeks to arrive :-(.

I found some other lecture notes from Coleman's QFT lectures online

https://arxiv.org/abs/1110.5013

There it's of course correct and very well discussed, as expected.
 
  • Like
Likes Demystifier and physicsworks

Suggested for: Simple S matrix example in Coleman's lectures on QFT

  • Last Post
Replies
2
Views
416
  • Last Post
Replies
4
Views
391
  • Last Post
Replies
5
Views
943
  • Last Post
Replies
1
Views
556
Replies
3
Views
353
Replies
4
Views
345
Replies
2
Views
422
Replies
11
Views
696
  • Last Post
Replies
10
Views
573
  • Last Post
Replies
1
Views
349
Top