Commutative ring | Exam question

  • Context: MHB 
  • Thread starter Thread starter Krizalid1
  • Start date Start date
  • Tags Tags
    Exam Ring
Click For Summary
SUMMARY

This discussion centers on the relationship between ideals in a commutative ring and their corresponding ideals in the quotient ring. It establishes that for any ideal $\overline{J}$ of the quotient ring $A/I$, there exists an ideal $J$ in the commutative ring $A$ that contains the ideal $I$. The proof involves demonstrating that the preimage of $\overline{J}$ under the canonical projection $\pi: A \longrightarrow A/I$ is indeed an ideal of $A$. The discussion also highlights the injective nature of the mapping between ideals of $A$ containing $I$ and ideals of the quotient ring $A/I$.

PREREQUISITES
  • Understanding of commutative rings and ideals
  • Familiarity with quotient rings and the concept of ring homomorphisms
  • Knowledge of the power set and its application in set theory
  • Basic proficiency in mathematical proofs and logic
NEXT STEPS
  • Study the properties of ideals in commutative rings
  • Learn about ring homomorphisms and their implications in algebra
  • Explore the concept of bijections in the context of algebraic structures
  • Investigate the role of the kernel in ring homomorphisms
USEFUL FOR

Mathematicians, algebra students, and educators interested in advanced topics in ring theory and the structure of ideals in commutative rings.

Krizalid1
Messages
106
Reaction score
0
This is a question I gave in one of my exams. :D

If $I$ is an ideal of the commutative ring $A$ (with unity), then prove that for each ideal $\overline J$ of the quotient ring $A/I$, exists an ideal $J$ of $A$ that contains the ideal $I$ and the lateral classes of $I$ defined by the elements of $J$ are the elements of $\overline J.$
 
Physics news on Phys.org
Too easy? Too boring? :D
 
Krizalid said:
This is a question I gave in one of my exams. :D

If $I$ is an ideal of the commutative ring $A$ (with unity), then prove that for each ideal $\overline J$ of the quotient ring $A/I$, exists an ideal $J$ of $A$ that contains the ideal $I$ and the lateral classes of $I$ defined by the elements of $J$ are the elements of $\overline J.$

Krizalid said:
Too easy? Too boring? :D

I didn't even see it. It seems simple. Let me try.

$\pi: A \longrightarrow A / I$?

Is it that simple?
 
Almost...you want the inverse map:

[math]\pi^{-1}:P(A/I) \to P(A)[/math], where [math]P(S)[/math] is the power set of [math]S[/math].

Then given an ideal [math]\overline{J}[/math] of [math]A/I[/math], we have to show that [math]\pi^{-1}(\overline{J})[/math] is an ideal of [math]A[/math] containing [math]I[/math].

Since any ideal [math]\overline{J}[/math] of [math]A/I[/math] contains [math]I = 0 + I[/math], we have that [math]\pi^{-1}(0 + I) = \text{ker}(\pi) = I \subseteq \pi^{-1}(\overline{J})[/math].

Next, we have to show [math]\pi^{-1}(\overline{J})[/math] is an ideal. So let [math]x,y \in \pi^{-1}(\overline{J})[/math]. This means that:

[math]\pi(x),\pi(y) \in \overline{J}[/math], hence [math]\pi(x) - \pi(y) = \pi(x - y) \in \overline{J}[/math]

(since [math]\overline{J}[/math] is an ideal, and [math]\pi[/math] is a ring homomorphism) hence [math]x - y \in \pi^{-1}(\overline{J})[/math].

This shows that [math]\pi^{-1}(\overline{J})[/math] is an additive subgroup of [math]A[/math].

Now let [math]a \in A[/math] be arbitrary, and likewise choose an arbitrary [math]x \in \pi^{-1}(\overline{J})[/math].

We want to show that [math] ax \in \pi^{-1}(\overline{J})[/math].

But: [math]\pi(ax) = \pi(a)\pi(x)[/math] and [math]\pi(x) \in \overline{J}[/math], so since [math]\pi(a) \in \pi(A) = A/I[/math], and [math]\overline{J}[/math] is an ideal of [math]A/I[/math],

[math]\pi(ax) \in \overline{J}[/math], thus [math]ax \in \pi^{-1}(\overline{J})[/math].

Since [math]A[/math] is commutative, this suffices to show that [math]\pi^{-1}(\overline{J})[/math] is an ideal of [math]A[/math].

Next, we want to show that this map, restricted to the ideals of [math]A/I[/math], is injective. So let [math]\overline{J},\overline{K}[/math] be two ideals of [math]A/I[/math],

such that [math]J = \pi^{-1}(\overline{J}) = \pi^{-1}(\overline{K})[/math].

Then [math]\overline{J} = \pi(\pi^{-1}(\overline{J})) = \pi(\pi^{-1}(\overline{K})) = \overline{K}[/math].

Furthermore, if [math]J[/math] is ANY ideal of [math]A[/math] containing [math]I[/math], we have the ideal [math]\pi(J) = J/I[/math] of [math]A/I[/math] with:

[math]J = \pi^{-1}(J/I)[/math] (this is NOT true of sets in general, and only holds in this case because

[math]\pi[/math] is a surjective ring homomorphsm).

This establishes a bijection between ideals of [math]A[/math] containing [math]I[/math] and ideals of [math]A/I[/math]:

[math]J \leftrightarrow \overline{J} = J/I[/math]
 
Deveno, I admire your divine ( ;) ) patience! I'm very lazy with latex (and in general...).
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
984
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K