MHB Comparison between two numbers

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Compare the numbers $2^{2016}$ and $3^{201}7^{604}$.

I don't have the time yet to try it, but I can tell this is a very delicious problem so I decided to make it as a challenge here and hopefully I can crack it when I've the time and am able. I hope too that you'll agree with me that this is a superb challenging problem and I'm looking forward to see how our members are going to solve it. :o
 
Mathematics news on Phys.org
anemone said:
Compare the numbers $2^{2016}$ and $3^{201}7^{604}$.

I don't have the time yet to try it, but I can tell this is a very delicious problem so I decided to make it as a challenge here and hopefully I can crack it when I've the time and am able. I hope too that you'll agree with me that this is a superb challenging problem and I'm looking forward to see how our members are going to solve it. :o

we have $3 * 7^3 = 1029 > 2^{10}$
so $\frac {3 * 7^3}{2^{10}} = \frac{1029}{1024} = 1 + \frac{5}{1024} < 1 + \frac{1}{201}$
hence $ (\frac {3 * 7^3}{2^{10}})^{201} < (1 + \frac{1}{201})^{201} < e $ as $(1+\frac{1}{x})^x < e$
so $ (3 * 7 ^3)^{201} < e * 2^{2010}$
or $3^{201} * 7^{603} < 3 * 2^{2010}$
or $3^{201} * 7^{604} < 21 * 2^{2010} < 64 * 2^{2010}$
or $3^{201} * 7^{604} < 2^{2016}$
hence $2^{2016}$ is larger
 
Last edited:
kaliprasad said:
we have $3 * 7^3 = 1029 > 2^{10}$
so $\frac {3 * 7^3}{2^{10}} = \frac{1029}{1024} = 1 + \frac{5}{1024} < 1 + \frac{1}{201}$
hence $ (\frac {3 * 7^3}{2^{10}})^{201} < (1 + \frac{1}{201})^{201} < e $ as $(1+\frac{1}{x})^x < e$
so $ (3 * 7 ^3)^{201} < e * 2^{2010}$
or $3^{201} * 7^{603} < 3 * 2^{2010}$
or $3^{201} * 7^{604} < 21 * 2^{2010} < 64 * 2^{2010}$
or $3^{201} * 7^{604} < 2^{2016}$
hence $2^{2016}$ is larger

Very well done kaliprasad!(Cool)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
396
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K