A Completeness of the formal power series and valued fields

aalma
Messages
46
Reaction score
1
TL;DR
Trying to understand the completeness of K[[x]] and how to show that every cauchy sequence in it has a limit in K[[x]].
I had difficulty showing this no matter what I tried in (a) I am not getting it. Here for p(t) in K[[t]] : ## |p|=e^{-v(p)} ## where v(p) is the minimal index with a non-zero coiefficient.
I said that p_i is a cauchy sequence so, for every epsilon>0 there exists a natural N such that for all i,j>N we have
## |p_i(t)-p_j(t)|<epsilon ##, which is equivalent to that
## v(p_i(t)-p_j(t))>e^{-epsilon} ##.
But could not see how it helps here!.

Any clarifications would be great
 

Attachments

  • 20230125_193801.jpg
    20230125_193801.jpg
    44.9 KB · Views: 149
  • 20230125_194140.jpg
    20230125_194140.jpg
    34.7 KB · Views: 139
Last edited:
Physics news on Phys.org
In order for ##||p_i-p_j||## to be smaller than ##\varepsilon=e^{-n}## (for large ##i,j##) it must be the case that the first nonzero term of ##p_i-p_j## has degree larger than ##n##, i.e. the coefficients of ##1,t,...,t^n## are the same for ##p_i## and ##p_j.## So, for any fixed degree ##k##, the coefficient of ##t^k## in your sequence is eventually constant and the limit of your Cauchy sequence is just the power series whose coefficient of ##t^k## is this element of ##K##.
 
Thanks!
Here is what I did in a.
can you give direction for b? I think it would be similar to a but could not see how..
20230129_222740.jpg
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Replies
3
Views
2K
Replies
5
Views
1K
Replies
1
Views
3K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K