A Completeness of the formal power series and valued fields

aalma
Messages
46
Reaction score
1
TL;DR Summary
Trying to understand the completeness of K[[x]] and how to show that every cauchy sequence in it has a limit in K[[x]].
I had difficulty showing this no matter what I tried in (a) I am not getting it. Here for p(t) in K[[t]] : ## |p|=e^{-v(p)} ## where v(p) is the minimal index with a non-zero coiefficient.
I said that p_i is a cauchy sequence so, for every epsilon>0 there exists a natural N such that for all i,j>N we have
## |p_i(t)-p_j(t)|<epsilon ##, which is equivalent to that
## v(p_i(t)-p_j(t))>e^{-epsilon} ##.
But could not see how it helps here!.

Any clarifications would be great
 

Attachments

  • 20230125_193801.jpg
    20230125_193801.jpg
    44.9 KB · Views: 145
  • 20230125_194140.jpg
    20230125_194140.jpg
    34.7 KB · Views: 136
Last edited:
Physics news on Phys.org
In order for ##||p_i-p_j||## to be smaller than ##\varepsilon=e^{-n}## (for large ##i,j##) it must be the case that the first nonzero term of ##p_i-p_j## has degree larger than ##n##, i.e. the coefficients of ##1,t,...,t^n## are the same for ##p_i## and ##p_j.## So, for any fixed degree ##k##, the coefficient of ##t^k## in your sequence is eventually constant and the limit of your Cauchy sequence is just the power series whose coefficient of ##t^k## is this element of ##K##.
 
Thanks!
Here is what I did in a.
can you give direction for b? I think it would be similar to a but could not see how..
20230129_222740.jpg
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Replies
3
Views
2K
Replies
5
Views
984
Replies
1
Views
3K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Back
Top