- #1
- 996
- 5
- Homework Statement
- Let f = u + iv be analytic. Find v for given u.
- Relevant Equations
- \begin{align*}
u &= \frac{x}{x^2+y^2} = x (x^2+y^2)^{-1} \\
\rule{0mm}{18pt} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y}
\qquad\qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
\end{align*}
Solution Attempt:
\begin{align}
\frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} = (x^2+y^2)^{-1} -x (x^2+y^2)^{-2} (2x)
= (x^2+y^2)^{-1} - 2x^2 (x^2+y^2)^{-2}
\\
\rule{0mm}{18pt} \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} = -x (x^2+y^2)^{-2} (2y) = -2xy(x^2+y^2)^{-2}
\\
\rule{0mm}{18pt} \frac{\partial v}{\partial x} &= 2xy(x^2+y^2)^{-2}
\\
\rule{0mm}{18pt} v &= -y(x^2+y^2)^{-1} + g(y)
\\
\rule{0mm}{18pt} \frac{\partial v}{\partial x} &= y(x^2+y^2)^{-2} (2x)
= 2xy(x^2+y^2)^{-2} \qquad \checkmark
\\
\rule{0mm}{18pt} \frac{\partial v}{\partial y} &= -(x^2+y^2)^{-1} + 2y^2 (x^2+y^2)^{-2} + g'(y)
\end{align}
Equating (1) and (6):
\begin{equation}
-(x^2+y^2)^{-1} + 2y^2 (x^2+y^2)^{-2} + g'(y) = (x^2+y^2)^{-1} - 2x^2 (x^2+y^2)^{-2}
\end{equation}
I get stuck at the last step. I can't see any function of y that would satisfy the equation. What am I doing wrong?
\begin{align}
\frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} = (x^2+y^2)^{-1} -x (x^2+y^2)^{-2} (2x)
= (x^2+y^2)^{-1} - 2x^2 (x^2+y^2)^{-2}
\\
\rule{0mm}{18pt} \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} = -x (x^2+y^2)^{-2} (2y) = -2xy(x^2+y^2)^{-2}
\\
\rule{0mm}{18pt} \frac{\partial v}{\partial x} &= 2xy(x^2+y^2)^{-2}
\\
\rule{0mm}{18pt} v &= -y(x^2+y^2)^{-1} + g(y)
\\
\rule{0mm}{18pt} \frac{\partial v}{\partial x} &= y(x^2+y^2)^{-2} (2x)
= 2xy(x^2+y^2)^{-2} \qquad \checkmark
\\
\rule{0mm}{18pt} \frac{\partial v}{\partial y} &= -(x^2+y^2)^{-1} + 2y^2 (x^2+y^2)^{-2} + g'(y)
\end{align}
Equating (1) and (6):
\begin{equation}
-(x^2+y^2)^{-1} + 2y^2 (x^2+y^2)^{-2} + g'(y) = (x^2+y^2)^{-1} - 2x^2 (x^2+y^2)^{-2}
\end{equation}
I get stuck at the last step. I can't see any function of y that would satisfy the equation. What am I doing wrong?
Last edited: