Complex Integral: $\int_0^1$ Calculation

Click For Summary

Discussion Overview

The discussion revolves around the calculation of the complex integral $\int_0^1 \frac{2t+i}{t^2+it+1} dt$. Participants explore various approaches to evaluate the integral, including substitution methods and the implications of the numerator being the derivative of the denominator. The conversation includes technical reasoning, challenges to proposed methods, and references to complex analysis concepts.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that the integral can be simplified using substitution, while others argue that substitution is not defined for complex integrals due to the nature of closed paths.
  • A participant notes that the numerator is the derivative of the denominator, suggesting a potential simplification.
  • Another participant mentions that integrating with respect to a real variable treats the imaginary unit $i$ as a constant.
  • There are conflicting views on the validity of using certain substitutions, with some asserting that it leads to incorrect conclusions.
  • One participant references a textbook claim regarding the evaluation of complex integrals, prompting a request for citation.
  • Several participants discuss the implications of breaking complex integrals into real and imaginary parts, with some expressing concerns about the practicality of this approach.
  • There is mention of Cauchy's Integral Formula and Residue Theory as part of the broader context of evaluating complex integrals.

Areas of Agreement / Disagreement

Participants express multiple competing views on the methods for evaluating the integral, and the discussion remains unresolved regarding the best approach. There is no consensus on the validity of specific substitution techniques or the implications of the integral's structure.

Contextual Notes

Limitations include the dependence on the definitions of substitution in complex analysis and the unresolved nature of certain mathematical steps discussed by participants.

Dustinsfl
Messages
2,217
Reaction score
5
$\displaystyle \int_0^1 \frac{2t+i}{t^2+it+1} dt = \int_0^1 \left(\frac{t}{2} + \frac{i}{4} + \frac{5/4}{2t+i}\right) dt = \frac{1}{4} + \frac{5}{8} \ln\left(\sqrt{5}\right) + i\left(\frac{1}{4} + \frac{5}{8}\tan^{-1}\left(\frac{1}{2}\right)\right)$

Is this correct?
 
Last edited:
Physics news on Phys.org
dwsmith said:
$\displaystyle \int_0^1 \frac{2t+i}{t^2+it+1} dt = \int_0^1 \left(\frac{t}{2} + \frac{i}{4} + \frac{5/4}{2t+i}\right) dt = \frac{1}{4} + \frac{5}{8} \ln\left(\sqrt{5}\right) + i\left(\frac{1}{4} + \tan^{-1}(-2)\right)$

Is this correct?

I don't think it is. Note that the numerator is the derivative of the denominator. What does that suggest?
 
Ackbach said:
I don't think it is. Note that the numerator is the derivative of the denominator. What does that suggest?

U-sub isn't defined for Complex integrals because any closed path would be zero. A counter example is 1/z around the unit circle which isn't 0 and is closed path.
 
What Ackbach suggests is correct because you're integrating with respect to a real variable ($t$), in which case $i$ is just a constant.
 
dwsmith said:
U-sub isn't defined for Complex integrals because any closed path would be zero. A counter example is 1/z around the unit circle which isn't 0 and is closed path.

Random Variable said:
What Ackbach suggests is correct because you're integrating with respect to a real variable ($t$), in which case $i$ is just a constant.

Also, the denominator is nonzero on the integration path.
 
Random Variable said:
What Ackbach suggests is correct because you're integrating with respect to a real variable ($t$), in which case $i$ is just a constant.

I think I understand what my professor means. If we substitute,

$\int_{\gamma}\frac{1}{z}dz = \int_0^{2\pi}\frac{ie^{it}}{e^{it}}dt$

The numerator is the derivative of the denominator so substitutions is viable here as well.

$\int_1^1\frac{du}{u}=0\neq 2\pi i$.
 
EDIT: Erased a bunch of nonsesne
 
Last edited:
Ignore my previous post. It contains a bit of nonsense.$u = e^{it}$ for $t$ from $0$t o $2 \pi$ is the unit circle.

So $\displaystyle \int_{\gamma}\frac{1}{z}dz = \int_0^{2\pi}\frac{ie^{it}}{e^{it}}dt {\color {red} \ne } \int_{1}^{1}\frac{1}{u}du$.

But rather $\displaystyle \int_{\gamma}\frac{1}{z}dz = \int_0^{2\pi}\frac{ie^{it}}{e^{it}}dt = \int_{\gamma}\frac{1}{u}du$. And we're backing to where we started.
 
Random Variable said:
Ignore my previous post. It contains a bit of nonsense.$u = e^{it}$ for $t$ from $0$t o $2 \pi$ is the unit circle.

So $\displaystyle \int_{\gamma}\frac{1}{z}dz = \int_0^{2\pi}\frac{ie^{it}}{e^{it}}dt {\color {red} \ne } \int_{1}^{1}\frac{1}{u}du$.

But rather $\displaystyle \int_{\gamma}\frac{1}{z}dz = \int_0^{2\pi}\frac{ie^{it}}{e^{it}}dt = \int_{\gamma}\frac{1}{u}du$. And we're backing to where we started.

I just multiplied by the conjugate and obtained the answer without the use of substitution.
 
  • #10
So you said that $\displaystyle \int_{0}^{1} \frac{2t +i}{t^{2}+it+1} \ dt \ \frac{t^{2}-it+1}{t^2-it+1} = \int_{0}^{1} \frac{2t^{3}+3t}{t^4+3t^{2}+1} \ dt + i \int_{0}^{1} \frac{1-t^{2}}{t^{4}+3t^{2}+1} \ dt $?

The first integral is easy, but the second integral looks fairly nasty. But that is a valid approach.But I would still make that substitution to get $\displaystyle \int \frac{2t +i}{t^{2}+it+1} \ dt = \int \frac{1}{u} \ du = \ln u + C = \ln(t^{2}+it+1) + C$

Then $\displaystyle \int_{0}^{1} \frac{2t +i}{t^{2}+it+1} \ dt = \ln(1^{2}+i(1)+1) - \ln(0^{2}+i(0)+1) = \ln(2+i) - \ln(1) = \ln(2+i)$ which is the answer that WolframAlpha gives

http://www.wolframalpha.com/input/?i=integrate+(2t%2Bi)%2F(t^2%2Bit%2B1)+from+0+to+1
 
  • #11
Random Variable said:
So you said that $\displaystyle \int_{0}^{1} \frac{2t +i}{t^{2}+it+1} \ dt \ \frac{t^{2}-it+1}{t^2-it+1} = \int_{0}^{1} \frac{2t^{3}+3t}{t^4+3t^{2}+1} \ dt + i \int_{0}^{1} \frac{1-t^{2}}{t^{4}+3t^{2}+1} \ dt $?

The first integral is easy, but the second integral looks fairly nasty. But that is a valid approach.But I would still make that substitution to get $\displaystyle \int \frac{2t +i}{t^{2}+it+1} \ dt = \int \frac{1}{u} \ du = \ln u + C = \ln(t^{2}+it+1) + C$

Then $\displaystyle \int_{0}^{1} \frac{2t +i}{t^{2}+it+1} \ dt = \ln(1^{2}+i(1)+1) - \ln(0^{2}+i(0)+1) = \ln(2+i) - \ln(1) = \ln(2+i)$ which is the answer that WolframAlpha gives

http://www.wolframalpha.com/input/?i=integrate+(2t+i)/(t^2+it+1)+from+0+to+1
Yup that is what I did.
Since u-sub isn't defined for complex integrals, we can't use it even though it may work in some cases.
 
  • #12
Can you quote where in your textbook such a claim is made?
 
  • #13
Random Variable said:
Can you quote where in your textbook such a claim is made?

It is made by Richard Foote.
 
  • #14
I do believe you misinterpreted what he said. Because to evaluate every complex integral by breaking it into it's real and imaginary parts will become ridiculously time-consuming.
 
  • #15
Random Variable said:
I do believe you misinterpreted what he said. Because to evaluate every complex integral by breaking it into it's real and imaginary parts will become ridiculously time-consuming.

I don't do that every time. He wanted us to appreciate Cauchy's Integral Formula, Residue Theory, etc. So we were doing these integrals the hard way. I didn't misinterpret. He had a had a brief discussion about it on Friday when he noticed that some students were using it. That is when he gave the counter example of all closed curves will evaluate to 0 when we know that isn't the case.
 
  • #16
But your assertion that making the substitution $u =e^{it}$ would mean that $\displaystyle \int_{0}^{2 \pi} \frac{i e^{it}}{e^{it}} \ dt = \int_{1}^{1} \frac{1}{u} \ du$ is false.

That substitution, as I already stated, would mean that $\displaystyle \int_{0}^{2 \pi} \frac{i e^{it}}{e^{it}} \ dt = \int_{\gamma} \frac{1}{u} \ du$
 
  • #17
Random Variable said:
But your assertion that making the substitution $u =e^{it}$ would mean that $\displaystyle \int_{0}^{2 \pi} \frac{i e^{it}}{e^{it}} \ dt = \int_{1}^{1} \frac{1}{u} \ du$ is false.

That substitution, as I already stated, would mean that $\displaystyle \int_{0}^{2 \pi} \frac{i e^{it}}{e^{it}} \ dt = \int_{\gamma} \frac{1}{u} \ du$

If you do a change of bounds, you get 1 and 1. e^0 = 1 and e^{2\pi i} = 1
 
  • #18
We made the substitution $u = e^{it}$, and the limits are from $t=0$ to $t= 2 \pi$. Isn't that the definition of the unit circle?
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K