MHB Complex Integral: Solving a Difficult Problem

Click For Summary
The discussion revolves around solving a complex integral of the function f(z) = z²/(e²z + 1) over a curve defined by |z|=2. The integrand presents challenges due to its poles, specifically at points where e²z + 1 = 0, which includes a pole inside the contour. Cauchy's theorem is referenced, indicating that the integral can be evaluated using residues at these poles. Participants clarify the residue calculation and confirm that the integral over a different contour, which does not enclose any poles, results in zero. Ultimately, the integrals over specified contours yield distinct results based on the presence of poles.
Advent
Messages
29
Reaction score
0
Hi all!

I have to perform this complex integration over three curves, the first one is \( C=\{ z \in \mathbb{C} : |z|=2 \} \) and the function to integrate is

$$ f(z)=\frac{z^2}{e^{2z}+1}$$

If I do the usual change of variables \(z=2e^{i\theta} \) and integrate from \( \theta = 0 \rightarrow \theta = 2\pi \) the denominator term is gives me trouble, because of the double exponential.

Another way I was thinking, it was Cauchy's theorem. As \(f(z) \) has no poles then (I'm not sure of this) the sum of all residues is $0$ so the integral is $0$ too. But there are $z \in \mathbb{C}$ such that $e^{2z}+1 = 0 $, given by $z_{n}=\frac{1}{2}i(\pi + 2\pi n), n \in \mathbb{Z}$ and $z_{0}$ is inside $C$ which I think that is no pole, but the function goes to infinity, so it is not analytical there.

Thanks for your time
 
Last edited:
Physics news on Phys.org
Ruun said:
Hi all!

I have to perform this complex integration over three curves, the first one is \( C=\{ z \in \mathbb{C} : |z|=2 \} \) and the function to integrate is

$$ f(z)=\frac{z^2}{e^{2z}+1}$$

If I do the usual change of variables \(z=2e^{i\theta} \) and integrate from \( \theta = 0 \rightarrow \theta = 2\pi \) the denominator term is gives me trouble, because of the double exponential.

Another way I was thinking, it was Cauchy's theorem. As \(f(z) \) has no poles then (I'm not sure of this) the sum of all residues is $0$ so the integral is $0$ too. But there are $z \in \mathbb{C}$ such that $e^{2z}+1 = 0 $, given by $z_{n}=\frac{1}{2}i(\pi + 2\pi n), n \in \mathbb{Z}$ and $z_{0}$ is inside $C$ which I think that is no pole, but the function goes to infinity, so it is not analytical there.

Thanks for your time

Those are indeed poles. Cauchy's theorem says that since $C$ bounds a simply connected region where $f$ is meromorphic then $\displaystyle \oint_C f\;dz$ is the sum of the residues at these finitely many points. So, you are correct, $f$ is holomorphic on the interior of $C$ minus $\frac{\pi i}{2}$ and so Cauchy's theorem tells you that $\displaystyle \oint f\;dz=2\pi i\text{Res}(f,\tfrac{1}{2}\pi i)$. So, what is this residue? How can we compute it?
 
Hi, thanks for your reply.

The residue is:

$$\lim_{z\to i\pi/2}\left(z-\frac{i\pi}{2}\right)\frac{z^2}{e^{2z}+1}$$

Now, the "problem" is that I don't know to "factorize" $e^{2z}+1=0$, to cancel with $\left(z-\frac{i\pi}{2}\right)$ I was thinking in circular and hyperbolical functions, but they do not solve my problem as far as I can see:

$$e^{2z}=2(\cosh(z)+\sinh(z))$$

and

$$\cos(iz)=\cosh(z), \sin(iz)=-\sinh(z)$$

we have that

$$\lim_{z\to/2 i\pi}e^{2z}=\lim_{z \to i\pi/2}2(\cosh(z)+\sinh(z))=2(\cosh(i \pi/2 ) + \sinh(i\pi/2))=2(\cos(\pi/2)-\sin(\pi/2))=-2$$

but the factor $(z-i\frac{\pi}{2})$ goes to zero, and it can't go to zero, because there will be no pole afterall at $z=i\frac{\pi}{2}$, given you said that there is a pole.

Thanks for your time
 
Here is a hint for you.

Suppose that $f(z) = \frac{g(z)}{h(z)}$ where $g$ and $h$ are holomorphic functions. Suppose that at $p$ we have that $h(p)=0$ but $g(p)\not = 0$.
Then $f$ will have a pole at point $p$. Suppose further that $h'(p) \not = 0$ then prove that $\text{res}(f,p) = \frac{g(p)}{h'(p)}$.

Do this exercise first then apply this result to your problem!
 
Last edited:
No, it is indeed a pole because actually $\lim_{z\to i\pi/2}e^{2z}+1 = 0 \neq -1$ as you calculated.

We have: $\sin(i\cdot z) = - \displaystyle\frac{\sinh(z) }{\color{red} i} $

Now as for your residue note that:

$$\lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{e^{2z}+1} = \lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{ \left( f\left( \frac{i\pi}{2} \right) + f^\prime\left( \frac{i\pi}{2} \right) \cdot \left( z - \frac{i\pi}{2} \right) + \varepsilon(z) \cdot \left(z - \frac{i\pi}{2}\right) \right) }$$

where $f(z) := e^{2z} + 1$ and $\displaystyle\lim_{z\to i\pi/2} \varepsilon(z) = 0$ because $f$ is complex differentiable there (in fact, it is analytic on $\mathbb{C}$ ).

Thus:

$$\lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{e^{2z}+1} = \lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{ f^\prime\left( \frac{i\pi}{2} \right) \cdot \left( z - \frac{i\pi}{2} \right) + \varepsilon(z) \cdot \left(z - \frac{i\pi}{2}\right) } = ...$$ (Wink)
 
Last edited:
ThePerfectHacker said:
Here is a hint for you.

Suppose that $f(z) = \frac{g(z)}{h(z)}$ where $g$ and $h$ are holomorphic functions. Suppose that at $p$ we have that $h(p)=0$ but $g(p)\not = 0$.
Then $f$ will have a pole at point $p$. Suppose further that $h'(p) \not = 0$ then prove that $\text{res}(f,p) = \frac{g(p)}{h'(p)}$.

Do this exercise first then apply this result to your problem!

Hi, thanks for the hint!

Ok, now I see it, after some google research, that your result for the pole is the same as L'Hôpital's rule

$$\lim_{z\to p}(z-p)\frac{g(z)}{h(z)}=\lim_{z \to p}\frac{g(z)}{\frac{h(z)}{z-p}}=\lim_{z \to p}\frac{g(z)}{\frac{h(z)-h(p)}{z-p}}=\lim_{z \to p}\frac{g(z)}{h'(z)}=\frac{g(p)}{h'(p)}$$

wich is not $0$ nor $\infty$ so problem solved after substitution :D

PaulRS said:
No, it is indeed a pole because actually $\lim_{z\to i\pi/2}e^{2z}+1 = 0 \neq -1$ as you calculated.

We have: $\sin(i\cdot z) = - \displaystyle\frac{\sinh(z) }{\color{red} i} $

Now as for your residue note that:

$$\lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{e^{2z}+1} = \lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{ \left( f\left( \frac{i\pi}{2} \right) + f^\prime\left( \frac{i\pi}{2} \right) \cdot \left( z - \frac{i\pi}{2} \right) + \varepsilon(z) \cdot \left(z - \frac{i\pi}{2}\right) \right) + 1}$$

where $f(z) := e^{2z} + 1$ and $\displaystyle\lim_{z\to i\pi/2} \varepsilon(z) = 0$ because $f$ is complex differentiable there (in fact, it is analytic on $\mathbb{C}$ ).

Thus:

$$\lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{e^{2z}+1} = \lim_{z\to i\pi/2} \left( z - \frac{i\pi}{2} \right) \frac{z^2}{ f^\prime\left( \frac{i\pi}{2} \right) \cdot \left( z - \frac{i\pi}{2} \right) + \varepsilon(z) \cdot \left(z - \frac{i\pi}{2}\right) } = ...$$ (Wink)

Hi, thanks for your post, sorry for the huge $\sin(z)$ fail, I try to avoid that kind of silly mistakes but it seems to be some unavoidable part of my math skills...

I'm afraid I fail to see where the denominator comes from, specifically the $\varepsilon(z)$ term. Is the 2nd and higher order derivatives for the complex series of $e^{2z}$?. If so, shouldn't be $(z-i\pi/2)^2$ the third term? Then I wouldn't cancel with the numerator I know but I don't get it. And the $+1$ term? I don't get it too

Thanks for your time :D
 
Ruun said:
I'm afraid I fail to see where the denominator comes from, specifically the $\varepsilon(z)$ term. Is the 2nd and higher order derivatives for the complex series of $e^{2z}$?. If so, shouldn't be $(z-i\pi/2)^2$ the third term? Then I wouldn't cancel with the numerator I know but I don't get it. And the $+1$ term? I don't get it too

Thanks for your time :D

Actually you are right about the $+1$, it shouldn't be there, copy paste typo.

I will put the rest in a different way if you like, we may write: $ \displaystyle\lim_{z\to i\pi/2} \frac{f(z) - f\left(i\pi/2\right)}{z - i\pi/2 } = f^\prime\left(i\pi/2\right)$ $(*)$

In this case $ f\left(i\pi/2\right) = 0$ so $ \displaystyle\lim_{z\to i\pi/2} \frac{f(z)}{z - i\pi/2 } = f^\prime\left(i\pi/2\right)$ and $ \displaystyle\lim_{z\to i\pi/2} \frac{(z - i\pi/2) \cdot z^2}{ f(z) } =\displaystyle\lim_{z\to i\pi/2} \frac{z^2}{ \frac{f(z)}{z - i\pi/2 } } = \frac{\lim_{z\to i\pi/2} z^2}{\lim_{z\to i\pi/2} \frac{f(z)}{z - i\pi/2 } } $ (the last equality holds since both limits are defined and the denominator's limit is not 0).

Note that $(*)$ is indeed equivalent to having $ f(z) = f\left(i\pi/2\right) + f^\prime\left(i\pi/2\right) \cdot (z - i\pi/2 ) + (z - i\pi/2 ) \cdot \varepsilon(z)$ for some function $\varepsilon(z)$ satisfying $ \varepsilon(z) \to 0$ as $ z \to i\pi/2$. This is what being differentiable is all about! (Rofl)
 
Thank you, now I get it! I didn't know the $\varepsilon(z)$ thing, my math training is the one I am being given in my physics undergraduate courses so it's quite mechanical and we don't care too much about math rigor. Such a bad mistake in my opinion, but I'm my spare time, wich is not as much as I wanted, I try to reinforce my math training.

So problem solved, thank you! :D
 
To be sure if I understood this, my answer to the first integral is $i\pi^3/4$.

If $c=\{2+e^{i\theta} : \theta \in [0,2\pi] \}$ as the poles are all in the imaginary axis, and $c$ is the circle of radius $1$ and center $2$ it never touches the imaginary axis, therefore no poles inside $c$, so the integral is $0$.

And finally if $c=\{z \in \mathbb{C}: |z-4i|=1\}$ is the circle of radius $1$ and center $4i$ this time there are two poles inside $c$ $z_{1}=i7\pi/2$ and $z_{2}=i9\pi/2$, my result is that the integral is $i65\pi^3/4$
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
922
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K