MHB Complex number equation graph problem

jaychay
Messages
58
Reaction score
0
1.png
2.png


Given (a,b) is the coordinate just like (x,y). Find equation Zo and coordinate (a,b) ?Please help me
Thank you in advance.
 
Last edited:
Physics news on Phys.org
Is the answer $z_o = (1,1)$ or simply $1+i$ and $(a, b)=(2, 1.8) $ ? Not sure about b though
 
DaalChawal said:
Is the answer $z_o = (1,1)$ or simply $1+i$ and $(a, b)=(2, 1.8) $ ? Not sure about b though
Can you tell me where does (a,b) = ( 2,1.8 ) come from ?
 
first of all $(a, b)$ are not co-ordinates... a represents the radius of circle centered at $z_o$ .
For b see the graph... from the circle we can say z must be outside the circle then it's real part should also be outside it(see the minimum value of Re(z) so that it is outside the circle)
 
I am really struggle with question 2 on how to find (a,b) I am not sure that b = 1.8 is correct or not
 
jaychay said:
I am really struggle with question 2 on how to find (a,b) I am not sure that b = 1.8 is correct or not
We are given the inequality $\operatorname{Re}z\ge b$ and in the graph we can see that the shaded area is to the right of the imaginary axis.
Therefore $b=0$.
 
Klaas van Aarsen said:
We are given the inequality $\operatorname{Re}z\ge b$ and in the graph we can see that the shaded area is to the right of the imaginary axis.
Therefore $b=0$.
So ( a,b ) is equal to ( 2,0 ) right ?
 
jaychay said:
So ( a,b ) is equal to ( 2,0 ) right ?
Yes.
 
Klaas van Aarsen said:
We are given the inequality $\operatorname{Re}z\ge b$ and in the graph we can see that the shaded area is to the right of the imaginary axis.
Therefore $b=0$.
Sir you are saying that Re(z) = 0 that means z =0 + i y means z will lie on imazinary axis but from the graph z lies in 1st and 4th quadrants except inside the circle. How is this possible?
 
  • #10
Klaas van Aarsen said:
Yes.
On question one Zo is equal to (1,1) right ?
 
  • #11
DaalChawal said:
Sir you are saying that Re(z) = 0 that means z =0 + i y means z will lie on imazinary axis but from the graph z lies in 1st and 4th quadrants except inside the circle. How is this possible?
We don't have $\operatorname{Re}(z)=0$ for the shaded area. Instead we have $\operatorname{Re}(z)\ge 0$.

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-10,"ymin":-6.756756756756757,"xmax":10,"ymax":6.756756756756757}},"randomSeed":"fb6b112a792f74beca093fcec90d2a8f","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"x\\ge0"},{"type":"expression","id":"3","color":"#388c46"}]}}[/DESMOS]
 
  • #12
The combination of $|z-(1+i)|>2$ and $\operatorname{Re} z\ge 0$ shows up as:

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-10,"ymin":-6.756756756756757,"xmax":10,"ymax":6.756756756756757}},"randomSeed":"5dafa6730d6be2f3a851403cb787a49a","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"\\left(x-1\\right)^{2}+\\left(y-1\\right)^{2}>2^{2}\\left\\{x\\ge0\\right\\}"},{"type":"expression","id":"2","color":"#2d70b3"},{"type":"expression","id":"3","color":"#388c46"}]}}[/DESMOS]

As we can see, this matches the shaded area in the opening post.
 
  • #13
jaychay said:
On question one Zo is equal to (1,1) right ?
I'd make it $z_0=1+i$, since $z_0$ is an imaginary number.
To be fair, that is equivalent to $(1,1)$, which is the cartesian representation of the same imaginary number.
 

Similar threads

Back
Top