MHB Complex numbers simplification

AI Thread Summary
To find \( z^5 \) where \( z = e^{(2-\frac{i \pi}{4})} \), the power rule for exponents can be applied. This results in \( z^5 = e^{5(2-\frac{i \pi}{4})} \). Expanding \( (2-\frac{i \pi}{4})^5 \) is unnecessary and more complex than needed. The simplified expression provides a clearer solution. Understanding the application of the power rule is key to solving such problems efficiently.
Guest2
Messages
192
Reaction score
0
If $z = e^{(2-\frac{i \pi}{4})}$ what's $z^5$?

The only way I can think of doing this is expanding $(2-\frac{i \pi}{4})^5$, but I think I'm supposed to use a simpler method (not sure what it's).
 
Mathematics news on Phys.org
Guest said:
If $z = e^{(2-\frac{i \pi}{4})}$ what's $z^5$?

The only way I can think of doing this is expanding $(2-\frac{i \pi}{4})^5$, but I think I'm supposed to use a simpler method (not sure what it's).

Hi Guest, (Smile)

Let's substitute and apply a power rule:
$$z^5=\left(e^{(2-\frac{i \pi}{4})}\right)^5
=e^{5(2-\frac{i \pi}{4})}
$$
 
I like Serena said:
Hi Guest, (Smile)

Let's substitute and apply a power rule:
$$z^5=\left(e^{(2-\frac{i \pi}{4})}\right)^5
=e^{5(2-\frac{i \pi}{4})}
$$
Thank you, I like Serena. I get it now. (Smile)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top