Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Complex substitution into the equation of motion.

  1. Mar 3, 2007 #1
    1. The problem statement, all variables and given/known data
    The equation of motion of a mass m relative to a rotating coordinate system is
    [tex]m\frac{d^{2}r}{dt^2} = \vec{F} - m\vec{\omega} \times (\vec{\omega} \times \vec{r}) - 2m(\vec{\omega} \times \frac{d\vec{r}}{dt}) - m(\frac{d\vec{\omega}}{dt} \times \vec{r})[/tex]

    Consider the case F = 0, [tex]\vec{r} = \hat{x} x + \hat{y} y[/tex], and [tex]\vec{\omega} = \omega \hat{z}[/tex], with [tex]\omega[/tex] a constant.

    Show that the replacement of [tex]\vec{r} = \hat{x} x + \hat{y} y[/tex] by z = x + iy leads to

    [tex]\frac{d^{2}z}{dt^2} + i2\omega\frac{dz}{dt} - \omega^2z=0[/tex].

    Note, This ODE may be solved by the substitution [tex]z=fe^{-i\omega t}[/tex]

    2. Relevant equations

    3. The attempt at a solution

    I've calculated that [tex]-\vec{\omega} \times (\vec{\omega} \times z) = \omega^2 z[/tex].

    As far as figuring out how [tex]-2(\vec{\omega} \times \frac{d\vec{r}}{dt}) -(\frac{d\omega}{dt} \times \vec{r})[/tex] gives [tex]i2\omega\frac{dz}{dt}[/tex] I'm lost.
  2. jcsd
  3. Mar 3, 2007 #2
    I solved it. Turns out that [tex]-2(\vec{\omega} \times \frac{d\vec{r}}{dt}) = -2i\omega\frac{dz}{dt}[/tex] and since F = 0 then [tex] \frac{d\omega}{dt} = 0[/tex].
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook