Stress-energy tensor for a rotating sphere

In summary: Therefore, in summary, the stress-energy tensor components are given by $$T^{00} = \rho + \mathcal{O}(\Omega^2 r^2)$$$$T^{01} = -\rho \Omega x^2 + \mathcal{O}(\Omega^3 r^3)$$$$T^{02} = \rho \Omega x^1 + \mathcal{O}(\Omega^3 r^3)$$$$T^{03} = 0 + \mathcal{O}(\Omega^3 r^3)$$and the components ##T^{ij}## are of order ##\mathcal{O}(\rho \Omega^2
  • #1
Haorong Wu
420
90
Homework Statement
From Bernard Schutz's A first course in general relativity, exercise 19, in chapter 8.6:
Suppose a spherical body of uniform density ##\rho## and radius ##R## rotates ridigly about the ##x^3## axis with constant angular velocity ##\Omega##. Write down the components ##T^{0\nu}## in a Lorentz frame at rest with respect to the center of mass of the body, assuming ##\rho##, ##\Omega##, and ##R## are independent of time. For each component, work to the lowest nonvanishing order in ##\Omega R##.
Relevant Equations
For dust, ##T= \rho U \otimes U ##.

For a perfect fluid, ##T=(\rho + p) U \otimes U+p g^{-1}##
The answer with no details is given by
##T^{00}=\rho, T^{01}=-\rho \Omega x^2, T^{02}=\rho \Omega x^1, T^{03}=0.## The components ##T^{ij}## are not fully determined by the given information, but they must be of order ##\rho v^i v^j##, i.e. of order ##\rho \Omega^2 R^2##.

First, I considered a spherical shell because I thought the velocities at different radius ##r## will be different and hence the four-momentum will be different, as well.

Then, I writed down the linear momenta by $$\epsilon^{ijk} r_i p_j = L_k$$ with ##\vec r = R \cos \Omega t \hat x +R \sin \Omega t \hat y##, ##\vec L = L_3 \hat z=\frac {4 \pi R^3 \rho \Omega ^2 d R} 3 \hat z##. So $$P_x=\frac {4 \pi R^3 \rho \Omega ^2 d R \cos \Omega t} {3} \rm{~and}$$ $$P_y=- \frac {4 \pi R^3 \rho \Omega ^2 d R \sin \Omega t} {3}.$$

So the velocity is $$V_x=\frac R 3 \Omega^2 \cos \Omega t, V_y=- \frac R 3 \Omega^2 \sin \Omega t,$$ and the four-velocity will be given by ##U=(\gamma, \gamma v_x, \gamma v_y, 0)## with ##\gamma=1/\sqrt {1-v_x^2-v_y^2}##.

I am not sure what to do next. I tried to use the equations for dust that ##T^{00}=\rho U^0 U^0##, that would yield ##\rho \gamma ^2##. From the given answer, I see that I should really work in the MCRF with ##\gamma=1##. But in such a frame, ##U^i=0##. Then I would not derive the correct form of ##T^{0i}## in the answer.

Looking for some hints. Thanks.
 
Physics news on Phys.org
  • #2
Since the body undergoes rigid rotation about ##Ox^3##, you may write ##\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}## where ##\boldsymbol{\omega} = \Omega \mathbf{e}_3##. In suffix notation, ##v_i = \epsilon_{ijk} (\Omega\mathbf{e}_3)_j x_k = \Omega \epsilon_{ijk} \delta_{3j} x_k = \Omega \epsilon_{i3k} x_k##. You correctly write the stress energy tensor for dust, which is ##T^{\mu \nu} = \rho u^{\mu} u^{\nu}##. Note that ##v = |\boldsymbol{\omega} \times \mathbf{r}| = \Omega r \sin{\theta}##. Considering the components in the local Lorentz frame, where ##u = \gamma(1, \mathbf{v})##, then\begin{align*}
T^{00} = \rho \gamma^2 = \frac{\rho}{1-v^2} = \rho \sum_{k=0}^{\infty} v^{2k} &= \rho \sum_{k=0}^{\infty} (\Omega r \sin{\theta})^{2k} \\

&= \rho + \mathcal{O}(\Omega^2 r^2)
\end{align*}\begin{align*}
T^{i0} = \rho \gamma^2 v^i = \frac{\rho \Omega \epsilon_{i3k} x_k}{1-v^2} &= \rho \Omega \epsilon_{i3k} x_k \sum_{k=0}^{\infty} (\Omega r \sin{\theta})^{2k} \\

&=\rho \Omega \epsilon_{i3k} x_k + \mathcal{O}(\Omega^3 r^3)
\end{align*}You can evaluate each of the ##T^{i0}##,\begin{align*}
T^{10} &= \rho \Omega \epsilon_{13k} x_k + \mathcal{O}(\Omega^3 r^3) = -\rho \Omega x_2 + \mathcal{O}(\Omega^3 r^3)\\
T^{20} &= \rho \Omega \epsilon_{23k} x_k + \mathcal{O}(\Omega^3 r^3) = \rho \Omega x_1 + \mathcal{O}(\Omega^3 r^3) \\
T^{30} &= \rho \Omega \epsilon_{33k} x_k + \mathcal{O}(\Omega^3 r^3) = 0+ \mathcal{O}(\Omega^3 r^3)
\end{align*}
 
  • Like
Likes Haorong Wu
Back
Top