MHB Complex Variables - Zeros of Analytic Functions

Click For Summary
The discussion focuses on extending a formula related to the zeros of analytic functions and proving a generalized theorem involving analytic functions and their poles. The participants clarify that the integral of the ratio of the derivative and the function itself can be expressed in terms of the values of another function at the zeros and poles of the original function. A method of proof involves factorizing the function and applying Cauchy's integral formula and theorem. Additionally, there is a query about demonstrating the analyticity of the inverse function, with discussions on the implications of injectivity and the relationship between the original function and its inverse. The conversation emphasizes the importance of understanding the argument principle and its applications in complex analysis.
joypav
Messages
149
Reaction score
0
Studying for my complex analysis final. I think this should be a simple question but wanted some clarification.

"Extend the formula

$$\frac{1}{2i\pi} \int_\omega \frac{h'(z)}{h(z)}\, dz = \sum_{j=1}^N n_j - \sum_{k=1}^M m_k$$

to prove the following.

Let $g$ be analytic on a domain containing $\omega$ and its inside. Then

$$\frac{1}{2i\pi} \int_\omega \frac{h'(z)}{h(z)}g(z)dz = \sum_{i=1}^N g(z_i) - \sum_{j=1}^M g(w_j)$$

where $z_1,...,z_N$ are the zeros of h and $w_1,...,w_M$ are the poles of h inside $\omega$, each listed according to its multiplicity."

Does this just utilize the theorem that states that

$\displaystyle \frac{1}{2i\pi} \int_\omega \frac{h'(z)}{h(z)}\, dz =$ number of zeros of h inside $\omega$ - number of poles of h inside $\omega$?
 
Last edited by a moderator:
Physics news on Phys.org
Hi joypav,

A method of proof used to prove the argument principle applies to the generalized theorem. Namely, factorize

$$h(z) = \frac{(z - z_1)\cdots (z - z_N)}{(z - w_1)\cdots (z - w_M)} f(z)$$

where $f$ is analytic and zero-free on an open neighborhood of $\omega$.

$$\frac{h'(z)}{h(z)}g(z) = \sum_{i = 1}^N \frac{g(z)}{z - z_i} - \sum_{j = 1}^M \frac{g(z)}{z - w_j} + \frac{f'(z)}{f(z)}g(z)$$

Integrate both sides over $\omega$, divide by $2 i\pi$, and use Cauchy's integral formula and Cauchy's theorem to establish

$$\frac{1}{2i\pi} \int_\omega \frac{h'(z)}{h(z)} = \sum_{i = 1}^N g(z_i) - \sum_{j = 1}^M g(w_j)$$
 
Got it... thank you
 
Following this same question... I want to show that
$$\displaystyle f^{-1}(w)=\frac{1}{2\pi i} \int_\omega \frac{zf'(z)}{f(z)-w}\, dz $$
where f is analytic and one to one on a domain D.

What I have:

$\omega$ is a piecewise smooth closed curve in D whose inside lies in D. Say $\Omega=f(D)$.
(the final goal is to show that $f^{-1}$ is analytic on $\Omega$)

Let w be a point of $\Omega$.
Let $g(z)=z$ and $h(z)=f(z)-w$.

We know from the previous question,
$$\frac{1}{2\pi i} \int_\omega \frac{h'(z)}{h(z)}g(z)dz = \sum_{i=1}^N g(z_i) - \sum_{j=1}^M g(w_j)$$

By making substitutions we get,
$$\frac{1}{2\pi i} \int_\omega \frac{f'(z)}{f(z)-w}zdz = \sum_{i=1}^N z_i - \sum_{j=1}^M w_j$$Now it seems like I am almost done. Is this correct so far?
I'm not sure how why the right side is equivalent to $f^{-1}(w)$, or if I am even on the right track.
We know,
$$h(z)=f(z)+w$$
$$f(z)=h(z)-w$$
$$f^{-1}(z)=h^{-1}(z-w)$$
$$f^{-1}(w)=h^{-1}(0)$$
And h has zeros ${z_1,...,z_N}$
I thought that may be how I can show their equivalence?
 
The inverse function $f^{-1}$ need not be analytic. In fact, analytic functions with analytic inverses are called biholomorphisms (some call them analytic isomorphisms).

The injectivity of $f$ implies $f(z) - w$ has a unique zero, say $z_0$. Since $f$ is analytic, $f(z) - w$ has no poles. Furthermore, $f'(z)$ equals the derivative of $f(z) - w$. So by the generalized argument principle, your integral equals $z_0$, which is $f^{-1}(w)$.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K