Composing a few transformations

  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    Transformations
Click For Summary
The discussion revolves around the simplification of a sequence of infinitesimal transformations involving generators Kμ and Kν. The user initially derives a more complex expression than what is presented in the textbook, leading to confusion over an extra term in their result. They express uncertainty about the discrepancy, questioning the necessity of quadratic terms in their expansion. A participant confirms the user's realization, suggesting that a thorough expansion is necessary to clarify the issue. The conversation emphasizes the importance of correctly handling higher-order terms in mathematical transformations.
etotheipi
Homework Statement
See below
Relevant Equations
N/A
I messed up somewhere, but don't know why! We consider this sequence of infinitesimal transformations,$$U = e^{i\varepsilon K_{\mu}}e^{i\varepsilon K_{\nu}}e^{-i\varepsilon K_{\mu}}e^{-i\varepsilon K_{\nu}}$$with ##K_{\mu}## and ##K_{\nu}## being two generators. I said, this simplifies to$$\begin{align*}

e^{i\varepsilon K_{\mu}}e^{i\varepsilon K_{\nu}}e^{-i\varepsilon K_{\mu}}e^{-i\varepsilon K_{\nu}} &= (I+i\varepsilon K_{\mu})(I+i\varepsilon K_{\nu})(I-i\varepsilon K_{\mu})(I-i\varepsilon K_{\nu}) + \mathcal{O}(\varepsilon^5) \\

&= \left[I + i\varepsilon(K_{\mu} + K_{\nu}) - \varepsilon^2 K_{\mu} K_{\nu} \right]\left[I - i\varepsilon(K_{\mu} + K_{\nu}) - \varepsilon^2 K_{\mu} K_{\nu} \right] + \mathcal{O}(\varepsilon^5) \\

&= I+ \varepsilon^2 (K_{\mu}^2 + K_{\mu} K_{\nu} + K_{\nu} K_{\mu} + K_{\nu}^2) -2 \varepsilon^2 K_{\mu} K_{\nu} + \mathcal{O}(\varepsilon^3) \\
&= I + \varepsilon^2 (K_{\nu} K_{\mu} - K_{\mu} K_{\nu}) + \varepsilon^2(K_{\mu}^2 + K_{\nu}^2) + \mathcal{O}(\varepsilon^3)

\end{align*}$$but the textbook only quotes$$U = I + \varepsilon^2 (K_{\nu} K_{\mu} - K_{\mu} K_{\nu}) + \mathcal{O}(\varepsilon^3)$$I wondered why I ended up with an extra term? Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
If you have an answer to second order ##\epsilon^2## then you ought to have quadratic terms in your original expansion.
 
  • Like
Likes etotheipi
PeroK said:
If you have an answer to second order ##\epsilon^2## then you ought to have quadratic terms in your original expansion.

Ohhh, you're right! Guess I'll get started on expanding all that out, then...
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
15
Views
2K
  • · Replies 19 ·
Replies
19
Views
1K