Complex Scattered polarization vector? (Conceptual)

In summary, the conversation discusses the equation for the scattered power per unit solid angle and its relation to the polarization vector. The electric field is described using Euler's formula, with the convention of wrapping phase and amplitude information into the complex vector ##\vec{E}_0##.
  • #1
PhDeezNutz
815
535
Homework Statement
This is more so a conceptual question rather than a specific homework problem. I always thought that the polarization vector (i.e. direction of the ##\vec{E}## - field denoted as ##\vec{\varepsilon}##) in an EM wave was a Euclidean three vector but apparently I am wrong because in one equation in my book they mention the complex conjugate ##\vec{\varepsilon}##. I'm using Zangwill's "Modern Electrodynamics" btw.

The specific part I'm confused about is

Call this equation 1

##\frac{d \sigma_{scatt}}{d \Omega} = \frac{\langle \frac{dP}{d \Omega} \rangle}{\frac{1}{2} \varepsilon_0 c E_0^2} = r^2 \frac{\vec{E}_{rad}^2}{\vec{E}_{0}^2} = \left| \vec{f} \left( \vec{k} \right) \right|^2##

"If our interest is a scattered electric field with a particular polarization ##\vec{\varepsilon}##, the differential scattering cross section (above) generalizes to"

Call this equation 2


##\left. \frac{d \sigma_{scatt}}{d \Omega} \right|_{\vec{\varepsilon}} = r^2 \frac{\left|\vec{\varepsilon}^* \cdot \vec{E}_{rad} \right|^2}{\left| \vec{E}_0\right|^2} = \left| \vec{\varepsilon}^* \cdot \vec{f}\left( \vec{k} \right) \right|^2##

Again I always thought ##\vec{\varepsilon}## was a 3D euclidean vector and I'm trying to reconcile what it would mean for it to be complex.
Relevant Equations
The differential scattering cross section is defined as

##\frac{d \sigma_{scatt}}{d \Omega} = \frac{\langle \vec{S}_{rad} \rangle \cdot r^2 \hat{r}}{\left| \langle \vec{S}_{inc} \rangle \right|}##

In the far field

##\vec{E} = \vec{E}_{inc} + \vec{E}_{rad} = E_0 \left[ \hat{e}_0 e^{i \vec{k}_0 \cdot \vec{r}} + \frac{e^{ikr}}{r} \vec{f} \left( \vec{k} \right)\right]e^{-i \omega t}##
I guess I will show my work for substantiating equation 1 and hopefully by doing so someone will be able to point out where I could generalize.

##\langle \vec{S}_{rad} \rangle = \frac{1}{2 \mu} \mathfrak{R} \left( \vec{E}_{rad} \times \vec{B}^*_{rad}\right) = \frac{1}{2 \mu} \mathfrak{R} \left( \vec{E}_{rad} \times \left( \hat{r} \times \vec{E}_{rad}^*\right) \sqrt{\mu \varepsilon} \right) = \sqrt{\frac{\varepsilon}{\mu}} \mathfrak{R} \left(\vec{E}_{rad} \times \left( \hat{r} \times \vec{E}_{rad}^* \right) \right) = \sqrt{\frac{\varepsilon}{mu}} \mathfrak{R} \left( \hat{r} \left(\vec{E}_{rad} \cdot \vec{E}_{rad}^* \right) - \vec{E}_{rad}^* \left( \hat{r} \cdot \vec{E}_{rad} \right) \right) = \sqrt{\frac{\varepsilon}{\mu}} \frac{E_0^2 \left|\vec{f} \left(\vec{k} \right) \right|^2}{r^2} \hat{r}##

##\langle \vec{S}_{inc} \rangle = \frac{1}{2 \mu} \mathfrak{R} \left( \vec{E}_{inc} \times \vec{B}_{inc}^*\right) = \sqrt{\frac{\varepsilon}{\mu}} \mathfrak{R} \left( \hat{r} \left( \vec{E}_{inc} \cdot \vec{E}_{inc}^*\right) \right) = \sqrt{\frac{\varepsilon}{\mu}} E_0^2##

Therefore

##\frac{d \sigma_{scatt}}{d \Omega} = \left| \vec{f} \left( \vec{k} \right) \right|^2 ##
 
Physics news on Phys.org
  • #2
I think I get it. The polarization vector contains information about phase as well as the direction of the electric field.

##\vec{E} = \vec{E}_0 e^{i \vec{k} \cdot \vec{r} - i \omega t}##

##e^{i \vec{k} \cdot \vec{r} - i \omega t}## indicates only that the wave is transverse and provides information about frequency. It says nothing about phase and amplitude.

I think the convention is to wrap up information about phase and amplitude into ##\vec{E}_0## and because ##\vec{E}_0## contains information about phase it must be complex (Euler's formula).
 
Back
Top