MHB Composition Series and Noetherian and Artinian Modules ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some help to fully understand the proof of part of Proposition 4.2.14 ... ...

Proposition 4.2.14 reads as follows:

https://www.physicsforums.com/attachments/8237
https://www.physicsforums.com/attachments/8235
In the above proof by Bland we read the following:

"... ... Since $$M / M_1$$ is a simple R-module, $$M / M_1$$ is artinian and noetherian ... ... Can someone please explain why $$M / M_1$$ being a simple R-module implies that $$M / M_1$$ is artinian and noetherian ... ... ?Peter
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some help to fully understand the proof of part of Proposition 4.2.14 ... ...

Proposition 4.2.14 reads as follows:
In the above proof by Bland we read the following:

"... ... Since $$M / M_1$$ is a simple R-module, $$M / M_1$$ is artinian and noetherian ... ... Can someone please explain why $$M / M_1$$ being a simple R-module implies that $$M / M_1$$ is artinian and noetherian ... ... ?Peter
It now occurs to me that the answer to my question is quite straightforward ... indeed ...$$M / M_1$$ is simple $$\Longrightarrow$$ only submodules of $$M / M_1$$ are $$\{ 0 \}$$ and $$M / M_1$$$$\Longrightarrow$$ only descending and ascending chains of submodules are finite ... that is terminate in a finite number of elements$$\Longrightarrow$$ $$M / M_1$$ is artinian and noetherian ...
Is that correct ... ?

Peter
 
Yes, it is correct. It means that every simple module is fingen.

It is not true for rings, though.
 
steenis said:
Yes, it is correct. It means that every simple module is fingen.

It is not true for rings, though.
Thanks steenis ...

Appreciate your help ...

Peter
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...