MHB Composition Series and Noetherian and Artinian Modules ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some help to fully understand the proof of part of Proposition 4.2.14 ... ...

Proposition 4.2.14 reads as follows:

https://www.physicsforums.com/attachments/8237
https://www.physicsforums.com/attachments/8235
In the above proof by Bland we read the following:

"... ... Since $$M / M_1$$ is a simple R-module, $$M / M_1$$ is artinian and noetherian ... ... Can someone please explain why $$M / M_1$$ being a simple R-module implies that $$M / M_1$$ is artinian and noetherian ... ... ?Peter
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some help to fully understand the proof of part of Proposition 4.2.14 ... ...

Proposition 4.2.14 reads as follows:
In the above proof by Bland we read the following:

"... ... Since $$M / M_1$$ is a simple R-module, $$M / M_1$$ is artinian and noetherian ... ... Can someone please explain why $$M / M_1$$ being a simple R-module implies that $$M / M_1$$ is artinian and noetherian ... ... ?Peter
It now occurs to me that the answer to my question is quite straightforward ... indeed ...$$M / M_1$$ is simple $$\Longrightarrow$$ only submodules of $$M / M_1$$ are $$\{ 0 \}$$ and $$M / M_1$$$$\Longrightarrow$$ only descending and ascending chains of submodules are finite ... that is terminate in a finite number of elements$$\Longrightarrow$$ $$M / M_1$$ is artinian and noetherian ...
Is that correct ... ?

Peter
 
Yes, it is correct. It means that every simple module is fingen.

It is not true for rings, though.
 
steenis said:
Yes, it is correct. It means that every simple module is fingen.

It is not true for rings, though.
Thanks steenis ...

Appreciate your help ...

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top