MHB Compute Area of 2 Simultaneous Inequalities: Don Leon at Yahoo Answers

AI Thread Summary
The area defined by the inequalities 0 < 2xy < 1 and 0 < (x+y)/2 < 1 is calculated through a series of integrals involving the intersection points of the curves y = 1/(2x) and y = 2 - x. The quadratic equation derived from these curves reveals the x-coordinates of intersections, leading to the area calculation using the Fundamental Theorem of Calculus. The final area is expressed as A = 2 - √2 + ln(√2 + 1). Additionally, polar coordinates can also be employed to derive the same area result.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

What is the area of the region defined by the following set of inequalities?


What is the area of the region defined by the following set of inequalities?
{ 0 < 2xy < 1 and 0< (x+y)/2 <1}

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Don Leon,

A simultaneous plot of the two inequalities:

$$0<2xy<1$$

$$0<\frac{x+y}{2}<1$$

is given here:

View attachment 1798

We need to know the $x$-coordinates of the intersections of the curves:

$$y=\frac{1}{2x}$$

$$y=2-x$$

We obtain the quadratic:

$$2x^2-4x+1=0$$

And application of the quadratic formula reveals:

$$x=1\pm\frac{1}{\sqrt{2}}$$

Hence, the area $A$ is given by:

$$A=\int_0^{1-\frac{1}{\sqrt{2}}} 2-x\,dx+\frac{1}{2}\int_{1-\frac{1}{\sqrt{2}}}^{1+\frac{1}{\sqrt{2}}}\frac{1}{x}\,dx+\int_{1+\frac{1}{\sqrt{2}}}^2 2-x\,dx$$

Application of the FTOC gives us:

$$A=\left[2x-\frac{1}{2}x^2 \right]_0^{1-\frac{1}{\sqrt{2}}}+\frac{1}{2}\left[\ln|x| \right]_{1-\frac{1}{\sqrt{2}}}^{1+\frac{1}{\sqrt{2}}}+\left[2x-\frac{1}{2}x^2 \right]_{1+\frac{1}{\sqrt{2}}}^2$$

Let's simplify one integral at a time:

$$\left[2x-\frac{1}{2}x^2 \right]_0^{1-\frac{1}{\sqrt{2}}}=2\left(1-\frac{1}{\sqrt{2}} \right)-\frac{1}{2}\left(1-\frac{1}{\sqrt{2}} \right)^2=2-\sqrt{2}-\frac{1}{2}\left(1-\sqrt{2}+\frac{1}{2} \right)=\frac{5}{4}-\frac{1}{\sqrt{2}}$$

$$\frac{1}{2}\left[\ln|x| \right]_{1-\frac{1}{\sqrt{2}}}^{1+\frac{1}{\sqrt{2}}}= \frac{1}{2}\ln\left(\frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}} \right)= \frac{1}{2}\ln\left(\frac{\sqrt{2}+1}{\sqrt{2}-1} \right)=\ln\left(\sqrt{2}+1 \right)$$

$$\left[2x-\frac{1}{2}x^2 \right]_{1+\frac{1}{\sqrt{2}}}^2=\left(2(2)-\frac{1}{2}(2)^2 \right)-\left(2\left(1+\frac{1}{\sqrt{2}} \right)-\frac{1}{2}\left(1+\frac{1}{\sqrt{2}} \right)^2 \right)=$$

$$(4-2)-\left(2+\sqrt{2}-\frac{1}{2}\left(1+\sqrt{2}+\frac{1}{2} \right) \right)=\frac{3}{4}-\frac{1}{\sqrt{2}}$$

Adding the results, we obtain:

$$A=2-\sqrt{2}+\ln\left(\sqrt{2}+1 \right)$$
 

Attachments

  • donleon.jpg
    donleon.jpg
    6.6 KB · Views: 114
We could also use polar coordinates to find the area.

The line $$x+y=2$$ becomes $$r^2=\frac{4}{1+\sin(2\theta)}$$ and the curve $$2xy=1$$ becomes $$r^2=\csc(2\theta)$$.

Equating the two, we find they intersect at:

$$\theta=\frac{1}{2}\sin^{-1}\left(\frac{1}{3} \right)$$

And so the area $A$ may be expressed as:

$$A=4\int_0^{\frac{1}{2}\sin^{-1}\left(\frac{1}{3} \right)}\frac{1}{1+\sin(2\theta)}\,d\theta+ \int_{\frac{1}{2}\sin^{-1}\left(\frac{1}{3} \right)}^{\frac{\pi}{4}}\csc(2\theta)\,d\theta$$

Applying the FTOC, we find:

$$A=2\left[\tan\left(\theta-\frac{\pi}{4} \right) \right]_0^{\frac{1}{2}\sin^{-1}\left(\frac{1}{3} \right)}+\frac{1}{2}\left[\ln\left|\csc(\theta)-\cot(\theta) \right| \right]_{\sin^{-1}\left(\frac{1}{3} \right)}^{\frac{\pi}{2}}$$

After simplifying, we obtain:

$$A=2-\sqrt{2}+\ln\left(\sqrt{2}+1 \right)$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top