Compute Discrete Time Fourier Transform

Click For Summary
SUMMARY

The discussion focuses on computing the Discrete Time Fourier Transform (DTFT) of the signal defined as \( x_n = a^n \cos(\lambda_0 n)u_n \), where \( |a| < 1 \) and \( \lambda_0 \in (0, \pi) \). Participants utilize Euler's formula to express the cosine function and derive the DTFT expression, leading to the equation \( X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} a^n (e^{-i(\lambda - \lambda_0) n}+ e^{-i(\lambda + \lambda_0) n}) \). The discussion emphasizes the modulation property of DTFT, which states that the transform of \( x^n e^{i \lambda_0 n} \) results in \( X(e^{i(\lambda-\lambda_0)}) \). Participants seek further assistance in simplifying and completing the DTFT calculation.

PREREQUISITES
  • Understanding of Discrete Time Fourier Transform (DTFT)
  • Familiarity with Euler's formula for complex exponentials
  • Knowledge of signal properties, specifically modulation
  • Basic concepts of infinite series and convergence
NEXT STEPS
  • Study the properties of the Discrete Time Fourier Transform (DTFT)
  • Learn about modulation in signal processing and its implications on DTFT
  • Explore convergence criteria for infinite series in signal analysis
  • Practice computing DTFT for various signal types, including exponential and sinusoidal signals
USEFUL FOR

Students and professionals in electrical engineering, signal processing, and applied mathematics who are working with Fourier analysis and discrete-time signals.

nacho-man
Messages
166
Reaction score
0
Hi bros,

so I feel like I am very close, but cannot find out how to go further.

Q.1 Compute the DTFT of the following signals, either directly or using its properties (below a is a fixed constant |a| < 1):

for $x_n = a^n \cos(\lambda_0 n)u_n$ where $\lambda_0 \in (0, \pi)$ and
$u_n$ is the step function, i.e $u_n = 1 $ for $n\ge 0 $ and $0$ otherwise.so,

$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} x_n e^{-i\lambda n}$$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cos(\lambda_0 n) e^{-i\lambda n}$

using euler's formula: $\cos(\lambda_0 n)$ = $\frac{e^{i\lambda_0 n}+ e^{-i\lambda_0 n}}{2} $

so $X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} (a e^{-i \lambda}( e^{i\lambda_0}+ e^{-i\lambda_0}))^n $

which gives

$\frac{1}{2} \sum_{n=0}^{+\infty} a^n(e^{i \lambda_0 - i\lambda} + e^{-i \lambda_0 - i\lambda})^n)$

and now i am stuck
.
i think i have it right upto this point, but i do not know how to proceed.

also in our notes, he has said to use the property called modulation, which meanswhere we have $x^n e^{i \lambda_0 n}$ the DTFT will be of the form $X(e^{i(\lambda-\lambda_0)})$ANY HELP IS APPRECIATED! thank you!
 
Physics news on Phys.org
Hi nacho! :)

nacho said:
$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cos(\lambda_0 n) e^{-i\lambda n}$

using euler's formula: $\cos(\lambda_0 n)$ = $\frac{e^{i\lambda_0 n}+ e^{-i\lambda_0 n}}{2} $

so $X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} (a e^{-i \lambda}( e^{i\lambda_0}+ e^{-i\lambda_0}))^n $

Not so fast.
Let's first do only the substitution.

$$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cdot \frac{1}{2} (e^{i\lambda_0 n}+ e^{-i\lambda_0 n}) \cdot e^{-i \lambda n} $$

This is different from what you have. :eek:
which gives

$\frac{1}{2} \sum_{n=0}^{+\infty} a^n(e^{i \lambda_0 - i\lambda} + e^{-i \lambda_0 - i\lambda})^n)$

and now i am stuck
.
i think i have it right upto this point, but i do not know how to proceed.

Let's redo that and simplify to:
$$X(e^{i \lambda})
= \frac{1}{2} \sum_{n=0}^{+\infty} a^n (e^{-i(\lambda - \lambda_0) n}+ e^{-i(\lambda + \lambda_0) n})
= \frac{1}{2} \sum_{n=0}^{+\infty} a^n e^{-i(\lambda - \lambda_0) n} + \frac{1}{2} \sum_{n=0}^{+\infty} a^n e^{-i(\lambda + \lambda_0) n}
$$
also in our notes, he has said to use the property called modulation, which meanswhere we have $x^n e^{i \lambda_0 n}$ the DTFT will be of the form $X(e^{i(\lambda-\lambda_0)})$

Can you apply this now? (Wondering)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K