MHB Compute Discrete Time Fourier Transform

AI Thread Summary
The discussion focuses on computing the Discrete Time Fourier Transform (DTFT) of the signal x_n = a^n cos(λ₀n)u_n, where |a| < 1 and u_n is the unit step function. The user successfully applies Euler's formula to express the cosine term and sets up the DTFT summation, but encounters difficulties in simplifying the expression further. Another participant suggests re-evaluating the substitution and highlights the modulation property, indicating that the DTFT can be represented in terms of shifted frequency components. The conversation emphasizes the importance of correctly applying these properties to proceed with the computation.
nacho-man
Messages
166
Reaction score
0
Hi bros,

so I feel like I am very close, but cannot find out how to go further.

Q.1 Compute the DTFT of the following signals, either directly or using its properties (below a is a fixed constant |a| < 1):

for $x_n = a^n \cos(\lambda_0 n)u_n$ where $\lambda_0 \in (0, \pi)$ and
$u_n$ is the step function, i.e $u_n = 1 $ for $n\ge 0 $ and $0$ otherwise.so,

$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} x_n e^{-i\lambda n}$$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cos(\lambda_0 n) e^{-i\lambda n}$

using euler's formula: $\cos(\lambda_0 n)$ = $\frac{e^{i\lambda_0 n}+ e^{-i\lambda_0 n}}{2} $

so $X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} (a e^{-i \lambda}( e^{i\lambda_0}+ e^{-i\lambda_0}))^n $

which gives

$\frac{1}{2} \sum_{n=0}^{+\infty} a^n(e^{i \lambda_0 - i\lambda} + e^{-i \lambda_0 - i\lambda})^n)$

and now i am stuck
.
i think i have it right upto this point, but i do not know how to proceed.

also in our notes, he has said to use the property called modulation, which meanswhere we have $x^n e^{i \lambda_0 n}$ the DTFT will be of the form $X(e^{i(\lambda-\lambda_0)})$ANY HELP IS APPRECIATED! thank you!
 
Mathematics news on Phys.org
Hi nacho! :)

nacho said:
$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cos(\lambda_0 n) e^{-i\lambda n}$

using euler's formula: $\cos(\lambda_0 n)$ = $\frac{e^{i\lambda_0 n}+ e^{-i\lambda_0 n}}{2} $

so $X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} (a e^{-i \lambda}( e^{i\lambda_0}+ e^{-i\lambda_0}))^n $

Not so fast.
Let's first do only the substitution.

$$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cdot \frac{1}{2} (e^{i\lambda_0 n}+ e^{-i\lambda_0 n}) \cdot e^{-i \lambda n} $$

This is different from what you have. :eek:
which gives

$\frac{1}{2} \sum_{n=0}^{+\infty} a^n(e^{i \lambda_0 - i\lambda} + e^{-i \lambda_0 - i\lambda})^n)$

and now i am stuck
.
i think i have it right upto this point, but i do not know how to proceed.

Let's redo that and simplify to:
$$X(e^{i \lambda})
= \frac{1}{2} \sum_{n=0}^{+\infty} a^n (e^{-i(\lambda - \lambda_0) n}+ e^{-i(\lambda + \lambda_0) n})
= \frac{1}{2} \sum_{n=0}^{+\infty} a^n e^{-i(\lambda - \lambda_0) n} + \frac{1}{2} \sum_{n=0}^{+\infty} a^n e^{-i(\lambda + \lambda_0) n}
$$
also in our notes, he has said to use the property called modulation, which meanswhere we have $x^n e^{i \lambda_0 n}$ the DTFT will be of the form $X(e^{i(\lambda-\lambda_0)})$

Can you apply this now? (Wondering)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
3
Views
1K
Replies
10
Views
2K
Replies
14
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
1
Views
627
Back
Top