MHB Compute Limit: \sqrt[n]{1+x^n}^n

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Limit
AI Thread Summary
The limit to compute is $$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right),$$ which is shown to converge to 2. The integral is bounded above by $2^n$ and below by a function that approaches 2 as n increases. The argument involves analyzing the behavior of the function $f_n(x) = 1 + x^n$ and the intervals where it exceeds certain values. A critical point is the limit of the expression $$\left(1 - \left(1-\frac{1}{n}\right)^{1/n}\right)^{1/n},$$ which approaches 1 as n approaches infinity. The conclusion is that the limit is indeed 2, confirming the validity of the derived bounds.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
 
Mathematics news on Phys.org
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Saw this on another site. Is there a bounty out for it xD.
 
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]
 
Opalg said:
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]

Nicely done, Chris! (Yes)

This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
 
MarkFL said:
This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
[sp]That argument does not work, because the function $f(x) = 1 + x^n$ depends on $n$. In fact, there is a whole sequence of functions $f_n(x) = 1 + x^n$. As it happens, they all have the same supremum $M = 2$. Given $\alpha<M$, each of these functions will have an interval $(c,d)$ on which $f_n(x)>\alpha$. But that interval will depend on $n$, so it should really be written $(c_n,d_n)$. As $n$ increases, that interval may well get shorter and shorter, and no reason is given to justify the conclusion that $(d_n - c_n)^{1/n} \to 1$ as $n\to\infty$. A more delicate argument is needed for that.

In my proof, I used $(x_0,1)$ as the interval on which $f_n(x) > 2 - \frac1n$. There too, I was using a possibly misleading notation, because $x_0$ also depends on $n$. I should probably have called it $x_n$. But my proof takes account of the fact that the interval $(x_n,1)$ decreases as $n$ increases.

So I think that my solution is right and the other one is wrong. :p

[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top