[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$
Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$
The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$
Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$
[/sp]