MHB Compute Limit: \sqrt[n]{1+x^n}^n

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Limit
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
 
Mathematics news on Phys.org
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Saw this on another site. Is there a bounty out for it xD.
 
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]
 
Opalg said:
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]

Nicely done, Chris! (Yes)

This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
 
MarkFL said:
This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
[sp]That argument does not work, because the function $f(x) = 1 + x^n$ depends on $n$. In fact, there is a whole sequence of functions $f_n(x) = 1 + x^n$. As it happens, they all have the same supremum $M = 2$. Given $\alpha<M$, each of these functions will have an interval $(c,d)$ on which $f_n(x)>\alpha$. But that interval will depend on $n$, so it should really be written $(c_n,d_n)$. As $n$ increases, that interval may well get shorter and shorter, and no reason is given to justify the conclusion that $(d_n - c_n)^{1/n} \to 1$ as $n\to\infty$. A more delicate argument is needed for that.

In my proof, I used $(x_0,1)$ as the interval on which $f_n(x) > 2 - \frac1n$. There too, I was using a possibly misleading notation, because $x_0$ also depends on $n$. I should probably have called it $x_n$. But my proof takes account of the fact that the interval $(x_n,1)$ decreases as $n$ increases.

So I think that my solution is right and the other one is wrong. :p

[/sp]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top