Compute Limit: \sqrt[n]{1+x^n}^n

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion revolves around computing the limit $$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$. Participants explore various approaches and reasoning related to this limit, including estimates and comparisons, while addressing potential pitfalls in the arguments presented.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants propose that for $0\leqslant x\leqslant1$, the inequality $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ holds, leading to the conclusion that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant 2$$.
  • Others argue that the function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, allowing for a lower bound on the integral, which leads to $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right)$$.
  • A later reply questions the validity of using intervals $(c_n,d_n)$ to analyze the behavior of the function as $n$ increases, suggesting that the intervals may shrink without justification for the limit behavior.
  • Some participants express confidence in their own proofs while challenging the correctness of others, indicating a lack of consensus on the validity of the different approaches presented.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the various arguments presented. There are competing views regarding the validity of the approaches and the implications of the inequalities used in the analysis.

Contextual Notes

Participants note that the behavior of the intervals and the dependence on $n$ are critical to the arguments, highlighting potential limitations in the reasoning that may affect the conclusions drawn.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
 
Physics news on Phys.org
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Saw this on another site. Is there a bounty out for it xD.
 
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]
 
Opalg said:
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]

Nicely done, Chris! (Yes)

This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
 
MarkFL said:
This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
[sp]That argument does not work, because the function $f(x) = 1 + x^n$ depends on $n$. In fact, there is a whole sequence of functions $f_n(x) = 1 + x^n$. As it happens, they all have the same supremum $M = 2$. Given $\alpha<M$, each of these functions will have an interval $(c,d)$ on which $f_n(x)>\alpha$. But that interval will depend on $n$, so it should really be written $(c_n,d_n)$. As $n$ increases, that interval may well get shorter and shorter, and no reason is given to justify the conclusion that $(d_n - c_n)^{1/n} \to 1$ as $n\to\infty$. A more delicate argument is needed for that.

In my proof, I used $(x_0,1)$ as the interval on which $f_n(x) > 2 - \frac1n$. There too, I was using a possibly misleading notation, because $x_0$ also depends on $n$. I should probably have called it $x_n$. But my proof takes account of the fact that the interval $(x_n,1)$ decreases as $n$ increases.

So I think that my solution is right and the other one is wrong. :p

[/sp]
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K