MHB Compute Limit: \sqrt[n]{1+x^n}^n

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit to compute is $$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right),$$ which is shown to converge to 2. The integral is bounded above by $2^n$ and below by a function that approaches 2 as n increases. The argument involves analyzing the behavior of the function $f_n(x) = 1 + x^n$ and the intervals where it exceeds certain values. A critical point is the limit of the expression $$\left(1 - \left(1-\frac{1}{n}\right)^{1/n}\right)^{1/n},$$ which approaches 1 as n approaches infinity. The conclusion is that the limit is indeed 2, confirming the validity of the derived bounds.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
 
Mathematics news on Phys.org
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Saw this on another site. Is there a bounty out for it xD.
 
MarkFL said:
Compute the following limit:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]
 
Opalg said:
[sp]For $0\leqslant x\leqslant1$, $1+x^n \leqslant2$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \leqslant 2^n$$ and hence $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \leqslant2.$$

Now choose $n$ and let $x_0 = \left(1-\frac1n \right)^{1/n}$. The function $\left(1+x^n\right)^n$ is increasing on $[0,1]$, so on the interval $[x_0,1]$ it is greater than or equal to $\left(1+x_0^n\right)^n = \left(2 - \frac1n\right)^n$. Therefore $$\int_0^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(1+x^n\right)^n\,dx \geqslant \int_{x_0}^1 \left(2 - \tfrac1n\right)^ndx = \left(1 - \left(1-\tfrac1n\right)^{1/n}\right) \left(2 - \tfrac1n\right)^n.$$ Thus $$2 \geqslant \sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} \geqslant \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} \left(2 - \tfrac1n\right).$$

The aim now is to show that $$\lim_{n\to\infty} \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} = 1.$$ That will show that $$\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} $$ can be made as close as we wish to $2$ for all sufficiently large $n$, and hence $$\lim_{n\to\infty}\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx} = 2.$$

Start with the estimates $-2x <\ln(1-x) < -x$ and $\frac x2 < 1-e^{-x} < x$, valid for $0<x<\frac12.$ Put $x=\frac1n$ in the first inequality to get $$-\frac2n < \ln\left(1-\frac1n\right) < -\frac1n$$ for all $n\geqslant 2.$ Then $$e^{-2/n^2} < \left(1-\tfrac1n\right)^{1/n} < e^{-1/n^2},$$ and $$\frac2{n^2} > 1 - e^{-2/n^2} > 1 - \left(1-\tfrac1n\right)^{1/n} > 1 - e^{-1/n^2} > \frac1{2n^2}.$$ Therefore $$\left(\frac2{n^2}\right)^{1/n} > \left(1 - \left(1-\tfrac1n\right)^{1/n}\right)^{1/n} > \left(\frac1{2n^2}\right)^{1/n}$$, and the result follows from the fact that $$\lim_{n\to\infty}\left(\frac1n\right)^{1/n} = 1.$$

[/sp]

Nicely done, Chris! (Yes)

This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
 
MarkFL said:
This is the solution I found elsewhere:

We are given to evaluate:

$$\lim_{n\to\infty}\left(\sqrt[n]{\int_0^1 \left(1+x^n\right)^n\,dx}\right)$$

Let $$f(x)=1+x^n$$ and observe that for all $$x\in\left[0,1\right]$$ and $$n\in\mathbb{N}$$, we have $$0<f(x)$$.

Now, let's define:

$$M\equiv\sup_{x \in [0,1]} f(x)$$

Observe then that we must have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n\,dx\right)^{\frac{1}{n}}= M$$

Thus, we conclude:

$$\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

Now let $\alpha$ be any non-negative real number strictly less than $M$. By definition, there must be some $x_0\in[0,1]$ such that $f\left(x_0\right)=M$. By continuity of $f$, we can find an interval $(c,d) \subset [0,1]$ such that $f(x)>\alpha$ for all $x\in(c,d)$. Then, for every $n$, we have:

$$\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d f(x)^n\,dx\right)^{\frac{1}{n}}\ge\left(\int_c^d \alpha^n\,dx\right)^{\frac{1}{n}}=\alpha(d-c)^{\frac{1}{n}}$$

Taking limits, there results:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge\lim_{n\to\infty}\left(\alpha(d-c)^{\frac{1}{n}}\right)=\alpha$$

Given that $\alpha$ is an arbitrary real number strictly less than $M$, the above implies:

$$\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\ge M$$

Thus, we have:

$$M\le\liminf_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le\limsup_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)\le M$$

And this implies:

$$\lim_{n\to\infty}\left(\left(\int_0^1 f(x)^n\,dx\right)^{\frac{1}{n}}\right)=M$$

For $f(x)=1+x^n$, we find $M=2$.
[sp]That argument does not work, because the function $f(x) = 1 + x^n$ depends on $n$. In fact, there is a whole sequence of functions $f_n(x) = 1 + x^n$. As it happens, they all have the same supremum $M = 2$. Given $\alpha<M$, each of these functions will have an interval $(c,d)$ on which $f_n(x)>\alpha$. But that interval will depend on $n$, so it should really be written $(c_n,d_n)$. As $n$ increases, that interval may well get shorter and shorter, and no reason is given to justify the conclusion that $(d_n - c_n)^{1/n} \to 1$ as $n\to\infty$. A more delicate argument is needed for that.

In my proof, I used $(x_0,1)$ as the interval on which $f_n(x) > 2 - \frac1n$. There too, I was using a possibly misleading notation, because $x_0$ also depends on $n$. I should probably have called it $x_n$. But my proof takes account of the fact that the interval $(x_n,1)$ decreases as $n$ increases.

So I think that my solution is right and the other one is wrong. :p

[/sp]
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K