MHB Compute probability closeness between points in a 2D surface

LucaDanieli
Messages
3
Reaction score
0
Hi all,

Sorry, in my first message, I posted this question in the Basic Probability section, and so I moved it to this section.

I have a surface (for example, a blank paper).
In this surface, I have some elements of the set "A" randomly distributed.
In this surface, I also have some elements of the set "B" randomly distributed.
I would like to understand how may elements of "B" are present within a ray X from any element of "A".

I mean something like: "for each element An, there are N% (probability_result) elements of "B". "

Is it possible?
 
Physics news on Phys.org
LucaDanieli said:
I would like to understand how may elements of "B" are present within a ray X from any element of "A".

Possibly need more information. Without more information about the ray, it seems you want to find the diameter of B and relate it to A in some way. What are you trying to do exactly?
 
Hi Joppy,

thank you for your reply. Indeed I am not a mathematician so I was not able to understand how much information you need. I have improved the explanation in this Stackoverflow thread: https://math.stackexchange.com/questions/3403515/compute-probability-closeness-points-within-2d-surface?noredirect=1#comment7002121_3403515

Does it help understanding my question?
 
I think by "ray" you mean "radius"? So perhaps the question is: given a sequence of points representing circle centers ($A_n$) with radii $r$ and a collection of points $B_m$, what proportion of points $B_n$ are contained within each circle centered at $A_n$?
 
Hi Joppy,

thanks for clarifying. Indeed it's radius and not ray. (I guess "ray" indicates the sunlight... in Italian they have the same term).
So the final question is exactly as you summarized.

So: given a sequence of points representing circle centers (An) with radii r and a collection of points Bm, what proportion of points Bn are contained within each circle centered at An ?

Thanks also for making terminology more correct.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top