MHB Compute Residue of $\Gamma(z)$ at Negative Integers & 0

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Poles
Click For Summary
The residue of the Gamma function, $\Gamma(z)$, at its poles, which occur at negative integers and zero, can be computed using the formula $\text{Res} = \frac{(-1)^m}{m!}$ for each pole $-m$. The calculation involves taking the limit as $z$ approaches $-m$ and utilizing the functional equation $\Gamma(z+1) = z\Gamma(z)$. The approach suggests using logarithmic differentiation and the integral representation of the Gamma function, although the latter requires careful handling of the integral. This method confirms that the residues at the poles are indeed determined by the factorial of the negative integer. The discussion emphasizes the importance of understanding the behavior of the Gamma function near its singularities.
Dustinsfl
Messages
2,217
Reaction score
5
Compute the residue of $\Gamma(z)$ at each of its poles.

So the poles are at the negative integers and 0. I suspect there must be a formula than since this is an infinite set.

$\Gamma(z) = \dfrac{e^{-\gamma z}}{z}\prod\limits_{n=1}^{\infty}\left(1+\dfrac{z}{n}\right)^{-1}e^{z/n}$

Should I start by logarithmically differentiating?
 
Physics news on Phys.org
Just a thought (I don't know if it'll work), but maybe using the $\Gamma$ function's integral representation (remember we have to split the integral several times in order to extend it past a certain integer) and using Fubini's theorem. Something along these lines.
 
Jose27 said:
Just a thought (I don't know if it'll work), but maybe using the $\Gamma$ function's integral representation (remember we have to split the integral several times in order to extend it past a certain integer) and using Fubini's theorem. Something along these lines.

$\displaystyle\Gamma(z) =\int_0^{\infty}e^{-t}t^z\dfrac{dt}{t}$

What should I do with this?

---------- Post added at 21:29 ---------- Previous post was at 20:37 ----------

The $\text{Res} = \lim\limits_{z\to -m}(z+m)\Gamma(z)$ and we can write $\Gamma(z) = \dfrac{\Gamma(z+m)}{(z+m-1)(z+m-2)\cdots (z+1)z}$ for the $\text{Re} z> -m$.

By substitution, we have
$$
\text{Res} = \lim_{z\to -m}(z+m)\Gamma(z) = \lim_{z\to -m}(z+m)\frac{\Gamma(z+m)}{(z+m-1)(z+m-2)\cdots (z+1)z}.
$$

By definition, we have $(z+m)\Gamma(z+m) = \Gamma(z+m+1)$.

So
$$
\text{Res} = \lim_{z\to -m}\frac{\Gamma(z+m+1)}{(z+m-1)(z+m-2)\cdots (z+1)z} = \frac{\Gamma(1) = 1}{(-1)(-2)\cdots (-m)} = \frac{(-1)^m}{m!}.
$$
 
Last edited:
dwsmith said:
$$
\text{Res} = \ldots = \frac{(-1)^m}{m!}.
$$
That is correct. The functional equation $\Gamma(z+1) = z\Gamma(z)$ is the key to the calculation.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
Replies
13
Views
3K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K