Compute the canonical momentum

  • Thread starter Thread starter Lambda96
  • Start date Start date
  • Tags Tags
    Momentum Physics
Lambda96
Messages
233
Reaction score
77
Homework Statement
Compute the canonical momentum ##\pi=\frac{\partial L}{\partial \dot{\textbf{x}}}##
Relevant Equations
none
Hi everyone,

I am not sure if I have calculated task b correctly:

Bildschirmfoto 2024-11-13 um 20.16.55.png


The Lagrange function has the form ##L=\frac{1}{2}m\Vert \dot{\textbf{x}}\|^2+\frac{q}{c} \dot{\textbf{x}} \cdot \textbf{A}-q\phi##

I then formed the canonical momentum ##\pi=\frac{\partial L}{\partial \dot{\textbf{x}}}##


$$\pi=m \dot{\textbf{x}}+\frac{q}{c} \cdot \textbf{A}$$
 
Physics news on Phys.org
Lambda96 said:
I then formed the canonical momentum ##\pi=\frac{\partial L}{\partial \dot{\textbf{x}}}##

$$\pi=m \dot{\textbf{x}}+\frac{q}{c} \cdot \textbf{A}$$
Should ##\pi## be bold (##\pmb{\pi}##)? Otherwise, it looks good to me.
 
  • Like
Likes Lambda96 and PhDeezNutz
Thank you TSny for your help 👍

Unfortunately I had forgotten to write ##\pmb{\pi}## :smile:
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top