I want to compute the position of a planet from its star as a function of time.(adsbygoogle = window.adsbygoogle || []).push({});

Here is an illustration describing the problem: http://orbitsimulator.com/PF/pft.GIF

Each of these 5 planets has a semi-major axis of 1 AU and a period of 1 year. The case of the planet in a circular orbit is easy. It's distance doesn't change, so for this planet, d(t)=sma, where sma is the semi-major axis of the planet.

But the other planets have eccentric orbits, causing their distances to vary. They travel fastest when near the star.

I made a plot of their distances vs time using a numerical method. But I'd like to what analytic formula could give me these distances as well. Here's the graph: http://orbitsimulator.com/PF/pft2.GIF

The y-axis is in meters, the x-axis in days. The names of the lines reveal the eccentricity of the planet (p8 is 0.8).

The graph for p2 looks like a sin wave, but the higher the eccentricity, the pointier the bottom of the sin wave. Is there a formula to describe these curves?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Computing distance as a function of time

**Physics Forums | Science Articles, Homework Help, Discussion**