A Computing Null Geodesics in Schwarzschild Geometry

Click For Summary
Computing null geodesics in Schwarzschild geometry differs from timelike geodesics primarily due to the use of proper time, which is zero for null geodesics. Instead, a different parameter, denoted as λ, is used, while conserved quantities like energy and angular momentum maintain similar forms. The key change in the equations arises from the conservation of the t-component of momentum, where the value of 1 becomes 0. The parameter λ does not have a direct physical interpretation like proper time, but it can be chosen to represent the 4-frequency of a light signal along the geodesic. Overall, the analysis of null geodesics retains the structure of conserved quantities while adapting to the unique properties of light-like trajectories.
stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
Computing timelike geodesics in the Schwarzschild geometry is pretty straightforward using conserved quantities. You can treat the problem as a variational problem with an effective Lagrangian of

##\mathcal{L} = \frac{1}{2} (Q \frac{dt}{d\tau}^2 - \frac{1}{Q} \frac{dr}{d\tau}^2 - r^2 (\frac{d\theta}{d\tau}^2 + sin^2(\theta) \frac{d\phi}{d\tau}^2))##

where ##Q = 1 - \frac{2GM}{r}##

This "lagrangian" leads to the following conserved quantities:

  1. ##K = Q \frac{dt}{d\tau}##
  2. ##L = r^2 \frac{d\phi}{dt}## (You can choose ##\theta## and ##\phi## so that ##\theta = \frac{\pi}{2}##, so all the radial motion is due to changing of ##\phi##
  3. ##\mathcal{L}## itself, which is always equal to 1/2.

In terms of these conserved quantities, the geodesics are completely determined by ##\frac{dr}{d\tau}##, which satisfies the one-D equation:

##\frac{1}{Q} (K^2 - \frac{dr}{dt}^2 ) - \frac{L^2}{r^2} = 1##

My question is: How are things changed if we are computing a null geodesic, instead of a timelike geodesic? The biggest change is that you can't use proper time as the parameter (since it's identically zero for null geodesics, by definition). If you replace ##\tau## by a different parameter, ##\lambda##, I'm assuming that it's still true that there is something like angular momentum that is conserved, but I'm not sure about the first equation, which is about the conservation of the ##t## component of momentum.
 
Last edited:
Physics news on Phys.org
The 1 becomes a zero, I think.

Carroll does it by observing that there is a Killing field parallel to ##\partial_t## and another parallel to ##\partial_\phi##, hence writing expressions for ##dt/d\lambda## and ##d\phi/d\lambda## in terms of conserved quantities along a geodesic, restricting himself to the equatorial plane, noting that ##g_{\mu\nu}\frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}## is either 0, -1, or +1, and solving for ##dr/d\lambda##. I think that's your last equation, give or take the value on the RHS.
 
Indeed, the 1 becoming a zero is the only change. The conserved ”energy” and ”angular momentum” quantities take the same form as they are the inner product between an affinely parametrized geodesic’s tangent and a Killing field.
 
Orodruin said:
Indeed, the 1 becoming a zero is the only change. The conserved ”energy” and ”angular momentum” quantities take the same form as they are the inner product between an affinely parametrized geodesic’s tangent and a Killing field.
So what is the parameter ##\lambda## for a null geodesic?
 
stevendaryl said:
So what is the parameter ##\lambda## for a null geodesic?
It does not have direct physical meaning the same way proper time does as you can reparametrize the geodesic without changing that the tangent vector us null.

If you want you could choose it such that the tangent vector is the 4-frequency of a light signal following that geodesic. However, there can be several such signals following the same geodesic.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
486
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
5K