Computing Null Geodesics in Schwarzschild Geometry

Click For Summary
SUMMARY

Computing null geodesics in Schwarzschild geometry requires a shift from proper time to an alternative parameter, denoted as ##\lambda##. The effective Lagrangian remains similar, but the conservation equations change, particularly with the conserved quantities for energy and angular momentum retaining their forms. The key distinction is that the parameter ##\lambda## does not possess direct physical meaning like proper time, as it can be reparametrized without affecting the null nature of the tangent vector. This discussion highlights the mathematical framework necessary for analyzing null geodesics in a Schwarzschild spacetime.

PREREQUISITES
  • Understanding of Schwarzschild geometry
  • Familiarity with variational principles in physics
  • Knowledge of Lagrangian mechanics
  • Concept of conserved quantities in geodesic motion
NEXT STEPS
  • Study the derivation of geodesic equations in general relativity
  • Explore the role of Killing vectors in spacetime symmetries
  • Investigate the implications of null geodesics in astrophysical contexts
  • Learn about the reparametrization of geodesics and its effects on physical interpretations
USEFUL FOR

Physicists, mathematicians, and students studying general relativity, particularly those interested in geodesic motion and the properties of Schwarzschild spacetime.

stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
Computing timelike geodesics in the Schwarzschild geometry is pretty straightforward using conserved quantities. You can treat the problem as a variational problem with an effective Lagrangian of

##\mathcal{L} = \frac{1}{2} (Q \frac{dt}{d\tau}^2 - \frac{1}{Q} \frac{dr}{d\tau}^2 - r^2 (\frac{d\theta}{d\tau}^2 + sin^2(\theta) \frac{d\phi}{d\tau}^2))##

where ##Q = 1 - \frac{2GM}{r}##

This "lagrangian" leads to the following conserved quantities:

  1. ##K = Q \frac{dt}{d\tau}##
  2. ##L = r^2 \frac{d\phi}{dt}## (You can choose ##\theta## and ##\phi## so that ##\theta = \frac{\pi}{2}##, so all the radial motion is due to changing of ##\phi##
  3. ##\mathcal{L}## itself, which is always equal to 1/2.

In terms of these conserved quantities, the geodesics are completely determined by ##\frac{dr}{d\tau}##, which satisfies the one-D equation:

##\frac{1}{Q} (K^2 - \frac{dr}{dt}^2 ) - \frac{L^2}{r^2} = 1##

My question is: How are things changed if we are computing a null geodesic, instead of a timelike geodesic? The biggest change is that you can't use proper time as the parameter (since it's identically zero for null geodesics, by definition). If you replace ##\tau## by a different parameter, ##\lambda##, I'm assuming that it's still true that there is something like angular momentum that is conserved, but I'm not sure about the first equation, which is about the conservation of the ##t## component of momentum.
 
Last edited:
Physics news on Phys.org
The 1 becomes a zero, I think.

Carroll does it by observing that there is a Killing field parallel to ##\partial_t## and another parallel to ##\partial_\phi##, hence writing expressions for ##dt/d\lambda## and ##d\phi/d\lambda## in terms of conserved quantities along a geodesic, restricting himself to the equatorial plane, noting that ##g_{\mu\nu}\frac{dx^\mu}{d\lambda}\frac{dx^\nu}{d\lambda}## is either 0, -1, or +1, and solving for ##dr/d\lambda##. I think that's your last equation, give or take the value on the RHS.
 
  • Like
Likes   Reactions: vanhees71
Indeed, the 1 becoming a zero is the only change. The conserved ”energy” and ”angular momentum” quantities take the same form as they are the inner product between an affinely parametrized geodesic’s tangent and a Killing field.
 
  • Like
Likes   Reactions: vanhees71
Orodruin said:
Indeed, the 1 becoming a zero is the only change. The conserved ”energy” and ”angular momentum” quantities take the same form as they are the inner product between an affinely parametrized geodesic’s tangent and a Killing field.
So what is the parameter ##\lambda## for a null geodesic?
 
  • Like
Likes   Reactions: vanhees71
stevendaryl said:
So what is the parameter ##\lambda## for a null geodesic?
It does not have direct physical meaning the same way proper time does as you can reparametrize the geodesic without changing that the tangent vector us null.

If you want you could choose it such that the tangent vector is the 4-frequency of a light signal following that geodesic. However, there can be several such signals following the same geodesic.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
761
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K