Undergrad Computing the expectation of the minimum difference between the 0th i.i.d.r.v. and ith i.i.d.r.v.s where 1 ≤ i ≤ n

Click For Summary
The discussion focuses on calculating the expected minimum difference between an independent random variable \(X_0\) and \(n\) other independent random variables \(X_i\) uniformly distributed on [0,1]. The author presents a detailed solution involving the computation of an integral that incorporates the probability of the absolute difference between \(X_0\) and \(X_i\). The key formula derived shows that the expectation can be expressed as \(L = \frac{n+3}{2(n+1)(n+2)}\). The solution involves evaluating nested integrals and applying probability principles to derive the final result. This approach effectively demonstrates the relationship between uniform distributions and expected values in probability theory.
WMDhamnekar
MHB
Messages
378
Reaction score
30
Problem :Let ##X_0,X_1,\dots,X_n## be independent random variables, each distributed uniformly on [0,1].Find ## E\left[ \min_{1\leq i\leq n}\vert X_0 -X_i\vert \right] ##.

Would any member of Physics Forum take efforts to explain with all details the following author's solution to this question?

Author's solution:
Let L be the expression in question. Then $$L=\displaystyle\int_0^1 E \left[ \min_{1 \leq i \leq n}\vert x- X_i \vert dx\right] =\displaystyle\int_0^1\displaystyle\int_0^1\left[P(\vert X_0 - x\vert\geq u )\right]^ndu dx $$
Since ## P(\vert X_0 -x \vert \geq u ) = \max(1-u-x,0) + \max(x-u ,0), x,u \in [0,1]## we have $$ P(\vert X_0 -x \vert \geq u )=\begin{cases} 1- 2u & 0 \leq u < x\\ 1-u -x & x \leq u < 1-x
& x \in[0,\frac12 ]\\ 0, & 1-x \leq u \leq 1\end{cases}$$
So,
$$L = 2\displaystyle\int_0^\frac12\left[\displaystyle\int_0^x (1-2u)^n du + \displaystyle\int_x^{1-x}(1-u-x)^n du\right]dx = \frac{n+3}{2(n+1)(n+2)}$$
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
16
Views
4K