I Computing the expectation of the minimum difference between the 0th i.i.d.r.v. and ith i.i.d.r.v.s where 1 ≤ i ≤ n

Click For Summary
The discussion focuses on calculating the expected minimum difference between an independent random variable \(X_0\) and \(n\) other independent random variables \(X_i\) uniformly distributed on [0,1]. The author presents a detailed solution involving the computation of an integral that incorporates the probability of the absolute difference between \(X_0\) and \(X_i\). The key formula derived shows that the expectation can be expressed as \(L = \frac{n+3}{2(n+1)(n+2)}\). The solution involves evaluating nested integrals and applying probability principles to derive the final result. This approach effectively demonstrates the relationship between uniform distributions and expected values in probability theory.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Problem :Let ##X_0,X_1,\dots,X_n## be independent random variables, each distributed uniformly on [0,1].Find ## E\left[ \min_{1\leq i\leq n}\vert X_0 -X_i\vert \right] ##.

Would any member of Physics Forum take efforts to explain with all details the following author's solution to this question?

Author's solution:
Let L be the expression in question. Then $$L=\displaystyle\int_0^1 E \left[ \min_{1 \leq i \leq n}\vert x- X_i \vert dx\right] =\displaystyle\int_0^1\displaystyle\int_0^1\left[P(\vert X_0 - x\vert\geq u )\right]^ndu dx $$
Since ## P(\vert X_0 -x \vert \geq u ) = \max(1-u-x,0) + \max(x-u ,0), x,u \in [0,1]## we have $$ P(\vert X_0 -x \vert \geq u )=\begin{cases} 1- 2u & 0 \leq u < x\\ 1-u -x & x \leq u < 1-x
& x \in[0,\frac12 ]\\ 0, & 1-x \leq u \leq 1\end{cases}$$
So,
$$L = 2\displaystyle\int_0^\frac12\left[\displaystyle\int_0^x (1-2u)^n du + \displaystyle\int_x^{1-x}(1-u-x)^n du\right]dx = \frac{n+3}{2(n+1)(n+2)}$$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
16
Views
4K