- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $X_1, X_2, X_3$ be i.i.d. with $X_1 \sim U[0, 1]$. I want to determine the density of $S=X_1+X_2+X_3$ using the convolution formula.
I have done the following:
Since $X_1, X_2, X_3$ are i.i.d. we have that they are independent identically distributed random variables. Since $X_1 \sim U[0, 1]$ we have that $X_1$ is distributed uniformly on the interval $[0,1]$.
So, all random variables $X_1, X_2, X_3$ are distributed uniformly on the interval $[0,1]$, right?
Then for the distribution we have that $$f_{X_1}(x)=f_{X_2}(x)=f_{X_3}(x)=\left\{\begin{matrix}
1 & \text{ if } 0\leq x\leq 1\\
0 & \text{ otherwise }
\end{matrix}\right.$$ To determine the density of $S=X_1+X_2+X_3$ we do the following:
We calculate first the density of $Y:=X_1+X_2$ using the convolution formula.
\begin{align*}f_Y(y)&=\int_{-\infty}^{+\infty}f_{X_1}(x)f_{X_2}(y-x)dx \\ & = \int_0^1f_{X_2}(y-x)dx \\ & = \int_0^1 1_{\{0\leq y -x\leq 1\}}dx \\ & = \int_0^1 1_{\{y-1\leq x\leq y\}}dx \end{align*}
At some notes I saw that this integral is equal to $$\left\{\begin{matrix}
y ,& 0\leq y\leq 1\\
2-y ,& 1\leq y\leq 2\\
0 ,& \text{ otherwise }
\end{matrix}\right.$$ How do we get that result? (Wondering) We apply again the convolution formula for $f_Y:=f_{X_1+X+2}$ and $f_{X_3}$.
\begin{align*}f_S(s)&=\int_{-\infty}^{+\infty}f_{Y}(x)f_{X_3}(s-x)dx \\ & = \int_0^1xf_{X_3}(s-x)dx+\int_1^2(2-x)f_{X_3}(s-x)dx \\ & = \int_0^1 x\cdot 1_{\{0\leq s -x\leq 1\}}dx +\int_1^2(2-x)\cdot 1_{\{0\leq s -x\leq 1\}}dx \\ & = \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx +\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx\end{align*}
Is everything correct do far? How can we calculate the last integrals? (Wondering)
Let $X_1, X_2, X_3$ be i.i.d. with $X_1 \sim U[0, 1]$. I want to determine the density of $S=X_1+X_2+X_3$ using the convolution formula.
I have done the following:
Since $X_1, X_2, X_3$ are i.i.d. we have that they are independent identically distributed random variables. Since $X_1 \sim U[0, 1]$ we have that $X_1$ is distributed uniformly on the interval $[0,1]$.
So, all random variables $X_1, X_2, X_3$ are distributed uniformly on the interval $[0,1]$, right?
Then for the distribution we have that $$f_{X_1}(x)=f_{X_2}(x)=f_{X_3}(x)=\left\{\begin{matrix}
1 & \text{ if } 0\leq x\leq 1\\
0 & \text{ otherwise }
\end{matrix}\right.$$ To determine the density of $S=X_1+X_2+X_3$ we do the following:
We calculate first the density of $Y:=X_1+X_2$ using the convolution formula.
\begin{align*}f_Y(y)&=\int_{-\infty}^{+\infty}f_{X_1}(x)f_{X_2}(y-x)dx \\ & = \int_0^1f_{X_2}(y-x)dx \\ & = \int_0^1 1_{\{0\leq y -x\leq 1\}}dx \\ & = \int_0^1 1_{\{y-1\leq x\leq y\}}dx \end{align*}
At some notes I saw that this integral is equal to $$\left\{\begin{matrix}
y ,& 0\leq y\leq 1\\
2-y ,& 1\leq y\leq 2\\
0 ,& \text{ otherwise }
\end{matrix}\right.$$ How do we get that result? (Wondering) We apply again the convolution formula for $f_Y:=f_{X_1+X+2}$ and $f_{X_3}$.
\begin{align*}f_S(s)&=\int_{-\infty}^{+\infty}f_{Y}(x)f_{X_3}(s-x)dx \\ & = \int_0^1xf_{X_3}(s-x)dx+\int_1^2(2-x)f_{X_3}(s-x)dx \\ & = \int_0^1 x\cdot 1_{\{0\leq s -x\leq 1\}}dx +\int_1^2(2-x)\cdot 1_{\{0\leq s -x\leq 1\}}dx \\ & = \int_0^1 x\cdot 1_{\{s-1\leq x\leq s\}}dx +\int_1^2(2-x)\cdot 1_{\{s-1\leq x\leq s\}}dx\end{align*}
Is everything correct do far? How can we calculate the last integrals? (Wondering)