Concept Decomposing of Partial Fractions

babby
Messages
3
Reaction score
0
I have a few questions about decomposing partial fractions. I know how to solve these problems, but I just don't understand why I'm doing some of the things.

1. Why does equating coefficients work? I don't understand the idea behind it.

2. When you are decomposing fractions into constants

EX:

1/(x-1)(x-2)^2 = A/(x-1) + B/(x-2) + C/(x-2)^2

Why do you have to repeat (x-2), instead of just putting B/(x-2)^2?

Thanks.
 
Mathematics news on Phys.org
You could, instead, do this:
\frac{A}{x-1} + \frac{Bx+C}{(x-2)^2}.
The point is that the numerator can be anything with degree less than the degree of the denominator.
 
g_edgar said:
You could, instead, do this:
\frac{A}{x-1} + \frac{Bx+C}{(x-2)^2}.
The point is that the numerator can be anything with degree less than the degree of the denominator.

Ah, that was what I was originally thinking, but forgot the variable. But is there a reason why you have to repeat the function when doing it the other way? I don't understand how it works. Is it because the first part of the function:

B/(x-2) eliminates the need for a numerator with one degree less than the denominator seen in

C/(x-2)^2?
 
OK, I understand that part now, but I have another question:

Can somebody explain to me why equating coefficients work?

Example:
8x^3+13x = Ax^3 + 2Ax + Bx^2 + 2B + Cx + D

expanded into:

8x^3 + 13x = Ax^3 + Bx^2 + (2A+C)x + 2(B+D)

where A,B,C,D are constants.

Why does 8 = A; 0 = B; 13 = 2A + C; etc.

I know they have same power variables, but why does this actually work? Thanks!
 
The technique involves the assumption that for the correct values of unknowns such as A, B, and C, both sides of the equation are equivalent for all x. This assmption would still hold after manipulation to put both sides in polynomial form. It should be obvious that two polynomial functions of x are equal for all x if the corresponding coefficients are equal.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
2K
Replies
2
Views
2K
Replies
11
Views
2K
Replies
10
Views
2K
Replies
8
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Back
Top