MHB Condition for A Quartic Equation to have a Real Root

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Condition Root
Click For Summary
The discussion focuses on the condition for the quartic equation y = x^4 + ax^3 + bx^2 + cx + 4 to have a real root, specifically proving that 20a^2 + 20b^2 + 5c^2 ≥ 64. Participants explore various approaches to demonstrate this inequality, emphasizing the importance of analyzing the behavior of the polynomial. The conversation includes attempts to correct previous mistakes and clarify misunderstandings regarding the proof. The mathematical rigor required for such a proof is highlighted, along with the implications of the findings for real roots in quartic equations. Ultimately, the condition is crucial for determining the existence of real solutions in the given polynomial.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show $20a^2+20b^2+5c^2\ge 64$ if $y=x^4+ax^3+bx^2+cx+4$ has a real root.
 
Mathematics news on Phys.org
Made an oopsie! (Crying)

-Dan
 
Solution of other:
Note that $x=0$ is not a solution for $x^4+ax^3+bx^2+cx+4=0$.

$ax^3+bx^2+cx=-(x^4+4)\\(ax^3+bx^2+cx)^2=-(x^4+4)^2\\\left(2a\dfrac{x^3}{2}+2b\dfrac{x^2}{2}+cx \right)=-(x^4+4)^2 \le (4a^2+4b^2+c^2)\left(\dfrac{x^6}{4}+\dfrac{x^4}{4}+x^2\right)$
by the CauchySchwarz inequality

This gives
$4a^2+4b^2+c^2\ge \dfrac{4(x^4+4)^2}{x^6+x^4+4x^2}$

Let $t=x^2$, now, we have to prove $\dfrac{4(t^2+4)^2}{t^3+t^2+4t}\ge \dfrac{64}{5}$, i.e. $\dfrac{(t^2+4)^2}{t^3+t^2+4t}\ge \dfrac{16}{5}$.

This is true since $\dfrac{(t^2+4)^2}{t^3+t^2+4t}\ge \dfrac{16}{5}$ implies $5(t^4+8t^2+16)\ge 16t^3+16t^2+64t$, or $(t-2)^2(5t^2+4t+20)\ge 0$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K