Confused about multipole expansion of vector potential

Click For Summary

Discussion Overview

The discussion revolves around the multipole expansion of the vector potential, specifically focusing on the form and application of vector spherical harmonics (VSH). Participants express confusion regarding the definitions and usage of VSH in relation to a specific expression for the hyperfine interaction operator, as well as the implications of different definitions found in literature.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant seeks clarification on the form of vector spherical harmonics (VSH) and their application in deriving a specific expression from a paper.
  • Another participant provides definitions for three types of vector spherical harmonics needed for multipole decomposition, including their orthogonality and normalization conditions.
  • A participant questions how to utilize the provided definitions to derive the original expression and inquires about the meaning of a specific notation in the context of the multipole expansion.
  • Some participants express frustration with the reliance on external references and the lack of self-contained explanations in the cited paper.
  • One participant mentions finding a book that may contain relevant information but remains confused after reviewing it.

Areas of Agreement / Disagreement

Participants generally express confusion and frustration regarding the definitions and applications of vector spherical harmonics, with no consensus on how to resolve these issues or derive the desired expression.

Contextual Notes

Participants note the potential limitations of the cited paper and the definitions of VSH, indicating that there may be variations in definitions across different sources. The discussion also highlights the dependency on external references for clarification.

kelly0303
Messages
573
Reaction score
33
Hello! I found an expression in this paper (eq. 1) for the multipole expansion of the vector potential. I am not sure I understand what form do the vector spherical harmonics (VSH) have. Also, for example, the usual hyperfine interaction operator is given by ##\frac{\mathbf{\mu}\cdot(\mathbf{r}\times \mathbf{\alpha})}{r^3}##. I am not sure how to get back to this expression using equation 1 (or 2), for k=1. On Wikipedia it seems like VSH are defined as ##Y_{lm}\hat{r}##, while in the reference they mention in the paper it would be ##\frac{1}{\sqrt{J(J+1)}}\mathbf{L}Y_{JM}##, where ##\mathbf{L}## is the orbital angular momentum operator. I tried using both and still didn't get back the original formula. Can someone help me with this? Thank you!
 
Physics news on Phys.org
For a multipole decomposition of a general vector field you need three kinds of vector-spherical harmonics. Written in standard spherical coordinates they are
$$\vec{\Psi}_{lm}(\vartheta,\varphi)=r \vec{\nabla} \mathrm{Y}_{lm}(\vartheta,\varphi),$$
$$\vec{\Phi}_{lm}(\vartheta,\varphi)=\vec{r} \times \vec{\nabla} \mathrm{Y}_{lm}(\vartheta,\varphi),$$
and
$$\vec{\mathrm{Y}}_{lm}(\vartheta,\varphi)=\vec{e}_r \text{Y}_{lm}(\vartheta,\varphi).$$
These are all mutually orthogonal to each other under the scalar product on the unit sphere
$$\langle \vec{V}_1|\vec{V}_2 \rangle=\int_{0}^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \sin \vartheta \vec{V}_1^*(\vartheta,\varphi) \cdot \vec{V}_2(\vartheta,\varphi)$$
and normlized according to
$$\langle \vec{\Psi}_{lm}|\vec{\Psi}_{l'm'} \rangle=l(l+1) \delta_{ll'} \delta_{mm'},$$
$$\langle \vec{\Phi}_{lm}|\vec{\Phi}_{l'm'} \rangle=l(l+1) \delta_{ll'} \delta_{mm'},$$
$$\langle \vec{\mathrm{Y}}_{lm}|\vec{\mathrm{Y}}_{l'm'} \rangle=\delta_{ll'} \delta_{mm'}.$$
 
vanhees71 said:
For a multipole decomposition of a general vector field you need three kinds of vector-spherical harmonics. Written in standard spherical coordinates they are
$$\vec{\Psi}_{lm}(\vartheta,\varphi)=r \vec{\nabla} \mathrm{Y}_{lm}(\vartheta,\varphi),$$
$$\vec{\Phi}_{lm}(\vartheta,\varphi)=\vec{r} \times \vec{\nabla} \mathrm{Y}_{lm}(\vartheta,\varphi),$$
and
$$\vec{\mathrm{Y}}_{lm}(\vartheta,\varphi)=\vec{e}_r \text{Y}_{lm}(\vartheta,\varphi).$$
These are all mutually orthogonal to each other under the scalar product on the unit sphere
$$\langle \vec{V}_1|\vec{V}_2 \rangle=\int_{0}^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \sin \vartheta \vec{V}_1^*(\vartheta,\varphi) \cdot \vec{V}_2(\vartheta,\varphi)$$
and normlized according to
$$\langle \vec{\Psi}_{lm}|\vec{\Psi}_{l'm'} \rangle=l(l+1) \delta_{ll'} \delta_{mm'},$$
$$\langle \vec{\Phi}_{lm}|\vec{\Phi}_{l'm'} \rangle=l(l+1) \delta_{ll'} \delta_{mm'},$$
$$\langle \vec{\mathrm{Y}}_{lm}|\vec{\mathrm{Y}}_{l'm'} \rangle=\delta_{ll'} \delta_{mm'}.$$
Thank you for the reply. But I am not sure I understand how to use this for the given expression. Is ##C_{k,\mu}^{(0)}(\hat{r})## a linear combination of the 3 terms you mentioned above? Also, what is the ##(0)## standing for?
 
I hate non-selfcontained papers :-(. Obviously they expect that you have the cited book at hand and look it up. Just laziness! I don't have the book at hand unfortunately.
 
vanhees71 said:
I hate non-selfcontained papers :-(. Obviously they expect that you have the cited book at hand and look it up. Just laziness! I don't have the book at hand unfortunately.
Ah I see it's not even a universal definition... I found the book here (please let me know if you can't access it). The section is 1.5.2, I would appreciate any insight from you as I am still confused after reading it.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
942
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 5 ·
Replies
5
Views
981