- #1
Haorong Wu
- 415
- 90
- TL;DR Summary
- Why the coefficients in expansions of a vector potential are different in different papers?
I have seen two expansions of a vector potential,
$$\mathbf A=\sum_\sigma \int \frac{d^3k}{(16 \pi^3 |\mathbf k|)^{1/2}} [\epsilon_\sigma(\mathbf k) \alpha_\sigma (\mathbf k) e^{i \mathbf k \cdot \mathbf x}+c.c.],$$
and
$$\mathbf A=\sum_\sigma \int \frac{d^3k}{ (2 \pi)^3(2 |\mathbf k|)^{1/2}} [\epsilon_\sigma(\mathbf k) \alpha_\sigma (\mathbf k) e^{i \mathbf k \cdot \mathbf x}+c.c.],$$
where ##\epsilon_\sigma## are polarizations, ##\alpha_\sigma (\mathbf k)## are amplitudes.
My problem is the two coefficients ## (2 \pi)^{3/2}## and ## (2 \pi)^3## in these two expressions, respectively. Why they are different?
I do not remember where I have read something about it, that it is related to the definition of Fourier transform.
Thanks for any hints.
$$\mathbf A=\sum_\sigma \int \frac{d^3k}{(16 \pi^3 |\mathbf k|)^{1/2}} [\epsilon_\sigma(\mathbf k) \alpha_\sigma (\mathbf k) e^{i \mathbf k \cdot \mathbf x}+c.c.],$$
and
$$\mathbf A=\sum_\sigma \int \frac{d^3k}{ (2 \pi)^3(2 |\mathbf k|)^{1/2}} [\epsilon_\sigma(\mathbf k) \alpha_\sigma (\mathbf k) e^{i \mathbf k \cdot \mathbf x}+c.c.],$$
where ##\epsilon_\sigma## are polarizations, ##\alpha_\sigma (\mathbf k)## are amplitudes.
My problem is the two coefficients ## (2 \pi)^{3/2}## and ## (2 \pi)^3## in these two expressions, respectively. Why they are different?
I do not remember where I have read something about it, that it is related to the definition of Fourier transform.
Thanks for any hints.