B Confusion about Divergence Theorem Step in Tong's Notes

Click For Summary
The discussion centers on a step in Tong's notes regarding the divergence theorem and its application in specific coordinates. The confusion arises from the relationship between the normal vector used and the unit normal vector required by the theorem. It is clarified that the normal vector must be unit with respect to the Riemannian metric, leading to the realization that the correct normal vector is related to the original one by a factor of N. This adjustment resolves the discrepancy and aligns the integral expressions correctly. Ultimately, understanding the proper normalization of the normal vector is key to applying the divergence theorem accurately in this context.
etotheipi
I wanted to ask about a step I couldn't understand in Tong's notes$$\int_M d^n x \partial_{\mu}(\sqrt{g} X^{\mu}) = \int_{\partial M} d^{n-1}x \sqrt{\gamma N^2} X^n = \int_{\partial M} d^{n-1}x \sqrt{\gamma} n_{\mu} X^{\mu}$$we're told that in these coordinates ##\partial M## is a surface of constant ##x^n##, and further that ##g = \mathrm{det}(g_{\mu \nu}) = \gamma N^2## where ##\gamma_{ij}## is the pull-back of ##g_{\mu \nu}## to ##\partial M##. Also, the normal vector is ##n^{\mu} = (0, \dots, 1/N)##, or with downstairs components ##n_{\mu} = (0, \dots, N)##.

But, I thought the usual divergence theorem was stated$$\int_M d^n x \partial_{\mu} V^{\mu} = \int_{\partial M} d^{n-1}x V^{\mu} n_{\mu}$$in which case I'd get
$$\int_M d^n x \partial_{\mu}(\sqrt{g} X^{\mu}) = \int_{\partial M} d^{n-1}x \sqrt{\gamma N^2} X^{\mu} n_{\mu} = N \int_{\partial M} d^{n-1}x \sqrt{\gamma} n_{\mu} X^{\mu} $$i.e. I'd still have the extra factor of ##N##. What am I forgetting...? Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
The theorem uses a unit normal vector, yours is not. In the first step it is not ##n##.
 
Ah, so did I need to use a normal vector which is unit with respect to the Riemannian metric ##\delta_{\mu \nu}##, e.g. ##m^{\mu} = (0,\dots, 1)##, and not ##n^{\mu}## which is unit with respect to the ##g_{\mu \nu}## metric? These would be related by ##n_{\mu} = N m_{\mu}## and I could write$$\int_M d^n x \partial_{\mu}(\sqrt{g} X^{\mu}) = \int_{\partial M} d^{n-1}x \sqrt{\gamma N^2} X^{\mu} m_{\mu} = \int_{\partial M} d^{n-1}x \sqrt{\gamma} n_{\mu} X^{\mu}$$which is what we want...