Confusion over Calculus Book example footnote

Click For Summary

Discussion Overview

The discussion revolves around a specific example from the "Calculus" textbook by Robert A. Adams and Christopher Essex, focusing on the application of the Fundamental Theorem of Calculus and the Chain Rule. Participants express confusion regarding a footnote in the example that references a number in parentheses, which they find unclear and potentially misleading.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the necessity of the footnote that references the number 5, suggesting it could have been omitted for clarity.
  • Another participant seeks clarification on whether the notation "(5)" was intended to refer to a previous equation, expressing confusion over its placement in the derivation.
  • Some participants discuss the typical conventions used in mathematical writing, noting that references to previous equations are usually made more explicitly.
  • A later post reflects on the Chain Rule and its application in the context of the integral, indicating a deeper understanding of the concepts involved.
  • One participant expresses appreciation for a previous explanation that helped clarify their confusion regarding the Chain Rule and its relation to the example.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the clarity of the footnote in question. While some express confusion and suggest alternatives, others find the notation acceptable after further discussion.

Contextual Notes

Participants highlight the potential for misunderstanding due to the notation used in the textbook, particularly regarding the reference to the number in parentheses. There is also mention of the importance of clear communication in mathematical derivations.

Who May Find This Useful

This discussion may be useful for students and educators in calculus who are exploring the Fundamental Theorem of Calculus and the Chain Rule, as well as those interested in the clarity of mathematical notation and conventions.

mcastillo356
Gold Member
Messages
660
Reaction score
364
Hi,PF

The book is "Calculus" 7th ed, by Robert A. Adams and Christopher Essex. It is about an explained example of the first conclusion of the Fundamental Theorem of Calculus, at Chapter 5.5.

I will only quote the step I have doubt about:

Example 7 Find the derivatives of the following functions:

(b) ##G(x)=x^2\,\displaystyle\int_{-4}^{5x}{\,e^{-t^2}\,dt}##

Solution By the Product Rule and the Chain Rule,

$$G'(x)=(...)$$
$$ =2x\displaystyle\int_{-4}^{5x}{\,e^{-t^2}\,dt}+x^2\;e^{-(5x)^2}\,(5)$$

When I've seen this last written (5), I've thought in first place that I had to move backwards in the textbook. At last, I've understood it referred to the integral upper limit.

Question: I've spent a few hours trying to understand the footnote: the number we must multiply the second summatory by.

Wouldn't it have been easier to just avoid this note and show the result, without that step? Furthermore: isn't this step unclear?.

Greetings!
 
Physics news on Phys.org
I have some difficulties understanding your actual question. Do you mean "why has the author put the 5 in paranthesis instead of ##\cdot 5##"?
 
  • Like
  • Informative
Likes   Reactions: mcastillo356 and PeroK
mcastillo356 said:
Wouldn't it have been easier to just avoid this note and show the result, without that step? Furthermore: isn't this step unclear?.
Do you mean just write?
$$\dots \ +5x^2e^{-25x^2}$$
 
  • Like
Likes   Reactions: mcastillo356
PeroK said:
Do you mean just write?
$$\dots \ +5x^2e^{-25x^2}$$
Yes
 
malawi_glenn said:
I have some difficulties understanding your actual question. Do you mean "why has the author put the 5 in paranthesis instead of ##\cdot 5##"?
Yes. It was confusing to me that parenthesis. It made me think it refered to some forgotten content I had to revisit somewhere, some pages back on the textbook. Actually, isn't that "(5)", I mean, the act of writing this kind of note, meant to refer to already read contains?
 
Usually it is made clear that you have to refer to a previous equation numbered 5, with something like "by (5)" or a similar phrasing, and it is usually done in the text, not in the middle of the equation (and just dropping a reference to some previous formula in the middle of derivation without any explanatory words wouldn't make much sense anyway). You can see that the author used similar notation in the derivation in the next example:
##\begin{align}
H(x) &= \int_{0}^{x^3}{e^{-t^2}\,dt}-\int_{0}^{x^2}{e^{-t^2}\,dt}\nonumber\\
H'(x) &= e^{-(x^3)^2}(3x^2) - e^{-(x^2)^2}(2x) \nonumber\\
&= 3x^2\,e^{-x^6} - 2x\,e^{-x^4} \nonumber
\end{align}##
 
  • Informative
Likes   Reactions: mcastillo356
Thanks, PF! I can understand why did they write the note. I can turn the page.
Regards!
 
Dragon27 said:
##\begin{align}
H(x) &= \int_{0}^{x^3}{e^{-t^2}\,dt}-\int_{0}^{x^2}{e^{-t^2}\,dt}\nonumber\\
H'(x) &= e^{-(x^3)^2}(3x^2) - e^{-(x^2)^2}(2x) \nonumber\\
&= 3x^2\,e^{-x^6} - 2x\,e^{-x^4} \nonumber
\end{align}##
Hi, PF, the quoted example builds the Chain Rule into the first conclusion of the Fundamental Theorem:

$$\displaystyle\frac{d}{dx}\displaystyle\int_a^{g(x)}\,f(t)dt=f(g(x))g'(x)$$

The doubt is related, but different at the same time; the Chain Rule itself. I will quote Wikipedia ("Chain Rule" article):

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions ##f## and ##g## in terms of the derivatives of ##f## and ##g##. More precisely, if ##h=f\circ{g}## is the function such that ##h(x)=f(g(x))## for every ##x##, then the chain rule is, in Lagrange notation, $$h'(x)=f'(g(x))g'(x)$$.

Well... Just solved the doubt. It is in fact that the number ##e## is the unique positive real number such that ##\displaystyle\frac{d}{dx}\,e^t=e^t##. I mean that I thought that the function ##e^{-t^2}## had not been differentiated. Indeed, of course it is.

Now, the question is: am I on the track?. Is this an inteligible post?

Greetings!
 
Well, from the Chain rule:
$$\begin{align}
&h(x)=f(g(x))\nonumber\\
&h'(x)=f'(g(x))g'(x)\nonumber
\end{align}$$
in case of the integral (I've changed the notation to avoid confusion)
$$\displaystyle\frac{d}{dx}\displaystyle\int_a^{g_1(x)}\,f_1(t)dt$$
we have
$$\begin{align}
&g(x)=g_1(x)\nonumber\\
&f(x)=\int_a^{x}\,f_1(t)dt\nonumber
\end{align}$$
so that
$$\begin{align}
&f'(x)=f_1(x)\nonumber\\
&h(x)=f(g(x))=\int_a^{g_1(x)}\,f_1(t)dt\nonumber\\
&h'(x)=f'(g(x))g'(x)=f_1(g_1(x))g_1'(x)\nonumber
\end{align}$$
 
  • Like
  • Informative
Likes   Reactions: vanhees71, mcastillo356 and PeroK
  • #10
Hi, PF, @Dragon27, it's just brilliant, I mean the previous post. It really has captured the doubt, and solved it in a bright mathematical language.

Thanks a lot!
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K