Confusion Regarding a Spectral Decomposition

Click For Summary
SUMMARY

The discussion centers on the spectral decomposition of an operator in quantum mechanics, specifically the operator $$\hat{A}=v_3 |0 \rangle \langle 0| + (v_1-\mathrm{i} v_2) |0 \rangle \langle 1| + (v_1+\mathrm{i} v_2) |1 \rangle \langle 0| - v_3 |1 \rangle \langle 1|$$. Participants clarify how to derive matrix elements $$A_{jk}=\langle j|\hat{A}|k \rangle$$ using the basis states $$|0 \rangle$$ and $$|1 \rangle$$. The completeness relation $$\sum_j |j \rangle \langle j|=\hat{1}$$ is emphasized as crucial for transitioning between operator and matrix representations.

PREREQUISITES
  • Understanding of quantum mechanics, particularly operator theory
  • Familiarity with Dirac notation and basis states
  • Knowledge of matrix representation of operators
  • Concept of completeness relation in Hilbert spaces
NEXT STEPS
  • Study the derivation of spectral decomposition in quantum mechanics
  • Learn about completeness relations and their applications in quantum theory
  • Explore the implications of matrix elements in quantum operators
  • Investigate the properties of Hermitian operators and their spectral decompositions
USEFUL FOR

Students and professionals in quantum mechanics, physicists working with quantum operators, and anyone interested in the mathematical foundations of quantum theory.

ARoyC
Messages
56
Reaction score
11
Hi. I am not being able to understand how we are getting the following spectral decomposition. It would be great if someone can explain it to me. Thank you in advance.
Screenshot 2023-07-07 145114.jpg
 
Physics news on Phys.org
It's simply a non-sensical equation. On the one side you write down a matrix, depicting matrix elements of an operator and on the other the operator itself. Correct is
$$\hat{A}=v_3 |0 \rangle \langle 0| + (v_1-\mathrm{i} v_2) |0 \rangle \langle 1| + (v_1+\mathrm{i} v_2) |1 \rangle \langle 0| - v_3 |1 \rangle \langle 1|.$$
The matrix elements in your matrix are then taken with respect to the basis ##(|0 \rangle,|1 \rangle)##.
$$(A_{jk})=\langle j|\hat{A}|k \rangle, \quad j,k \in \{0,1 \}.$$
To see this, simply use ##\langle j|k \rangle=\delta_{jk}##. Then you get, e.g.,
$$A_{01}=\langle 0|\hat{A}|1 \rangle=v_1-\mathrm{i} v_2.$$
 
  • Like
Likes   Reactions: strangerep and dextercioby
vanhees71 said:
It's simply a non-sensical equation. On the one side you write down a matrix, depicting matrix elements of an operator and on the other the operator itself. Correct is
$$\hat{A}=v_3 |0 \rangle \langle 0| + (v_1-\mathrm{i} v_2) |0 \rangle \langle 1| + (v_1+\mathrm{i} v_2) |1 \rangle \langle 0| - v_3 |1 \rangle \langle 1|.$$
The matrix elements in your matrix are then taken with respect to the basis ##(|0 \rangle,|1 \rangle)##.
$$(A_{jk})=\langle j|\hat{A}|k \rangle, \quad j,k \in \{0,1 \}.$$
To see this, simply use ##\langle j|k \rangle=\delta_{jk}##. Then you get, e.g.,
$$A_{01}=\langle 0|\hat{A}|1 \rangle=v_1-\mathrm{i} v_2.$$
Oh! Then we can go to the LHS of the equation from the RHS. Can't we do the reverse?
 
Sure:
$$\hat{A}=\sum_{j,k} |j \rangle \langle j|\hat{A}|k \rangle \langle k| = \sum_{jk} A_{jk} |j \rangle \langle k|.$$
The mapping from operators to matrix elements with respect to a complete orthonormal system is one-to-one. As very many formal manipulations in QT, it's just using the completeness relation,
$$\sum_j |j \rangle \langle j|=\hat{1}.$$
 
vanhees71 said:
Sure:
$$\hat{A}=\sum_{j,k} |j \rangle \langle j|\hat{A}|k \rangle \langle k| = \sum_{jk} A_{jk} |j \rangle \langle k|.$$
The mapping from operators to matrix elements with respect to a complete orthonormal system is one-to-one. As very many formal manipulations in QT, it's just using the completeness relation,
$$\sum_j |j \rangle \langle j|=\hat{1}.$$
How are we getting the very first equality that is A = Σ|j><j|A|k><k| ?
 
$$\hat{A}=\hat{1}\hat{A}\hat{1}=\left(\sum_{j} |j \rangle \langle j|\right)\hat{A}\left(\sum_{k} |k \rangle \langle k|\right)=\sum_{j,k} |j \rangle \langle j|\hat{A}|k \rangle \langle k| = \sum_{jk} A_{jk} |j \rangle \langle k|.$$
 
  • Like
Likes   Reactions: vanhees71
Haborix said:
$$\hat{A}=\hat{1}\hat{A}\hat{1}=\left(\sum_{j} |j \rangle \langle j|\right)\hat{A}\left(\sum_{k} |k \rangle \langle k|\right)=\sum_{j,k} |j \rangle \langle j|\hat{A}|k \rangle \langle k| = \sum_{jk} A_{jk} |j \rangle \langle k|.$$
Oh, okay, thanks a lot!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
984
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
587