High School Conjugation , involving operators in Dirac Notation.

Click For Summary
The discussion revolves around finding the adjoint of the operator P = |a><b| in Dirac notation. The confusion arises from the transformation of the inner product when taking the adjoint, specifically how the bras and kets are switched. The key point is that the adjoint operation involves taking the complex conjugate and reversing the order of the terms, leading to the result Px = |b><a|. Clarification is provided that the matrix elements involved are scalars, allowing for the reordering of products without resulting in a matrix. Understanding that these inner products yield numbers rather than matrices resolves the confusion regarding the manipulation of terms.
Somali_Physicist
Messages
117
Reaction score
13
In a PDF i was looking through i came about a question
for the operator P = |a><b|
find Px(adjoint)

the adjoint was defined as
<v|Px|u> = (<u|P|v>)* where u and v can be any bra and ket

now for the question:
(<u|a><b|v>)* = <v|Px|u>
this is the confusing step , i thought conjugated simply changed the bras and kets to the pair
e.g for (<a|c><d|b>)* = <c|a><b|d>
however the pdf states:
(<u|a><b|v>)* = <v|b><a|u>
hence the Px = |b><a|

I don't understand this , flipping it will confuse me for say 3 pairs.Does anyone have an explanation for this.
 
Physics news on Phys.org
Somali_Physicist said:
In a PDF i was looking through i came about a question
for the operator P = |a><b|
find Px(adjoint)

the adjoint was defined as
<v|Px|u> = (<u|P|v>)* where u and v can be any bra and ket

now for the question:
(<u|a><b|v>)* = <v|Px|u>
this is the confusing step , i thought conjugated simply changed the bras and kets to the pair
e.g for (<a|c><d|b>)* = <c|a><b|d>
however the pdf states:
(<u|a><b|v>)* = <v|b><a|u>
hence the Px = |b><a|

I don't understand this , flipping it will confuse me for say 3 pairs.Does anyone have an explanation for this.
'

I'm not sure what your point of confusion is.

  1. ##\langle v|P^\dagger|u\rangle = (\langle u|P|v\rangle)^*##: That's just the definition of ##P^\dagger## (I think ##P^\dagger## is used more often than ##P^x##)
  2. ##= (\langle u|a\rangle \langle b|v\rangle)^*##: That's just using the definition of ##P##.
  3. ##= (\langle u|a\rangle)^* (\langle b|v\rangle)^*##: That's just using the fact that the complex conjugate of a product is just the product of the complex conjugates.
  4. ## = \langle a|u\rangle \langle v|b\rangle##: That's just using the fact that for matrix elements, ##\langle A|B\rangle^* = \langle B | A \rangle##.
  5. ## = \langle v | b \rangle \langle a | u \rangle##: Since matrix elements are just numbers, you can change the order in a product.
So we've shown that ##\langle v | P^\dagger | u \rangle = \langle v | b \rangle \langle a | u \rangle##
 
  • Like
Likes Somali_Physicist
stevendaryl said:
'

I'm not sure what your point of confusion is.

  1. ##\langle v|P^\dagger|u\rangle = (\langle u|P|v\rangle)^*##: That's just the definition of ##P^\dagger## (I think ##P^\dagger## is used more often than ##P^x##)
  2. ##= (\langle u|a\rangle \langle b|v\rangle)^*##: That's just using the definition of ##P##.
  3. ##= (\langle u|a\rangle)^* (\langle b|v\rangle)^*##: That's just using the fact that the complex conjugate of a product is just the product of the complex conjugates.
  4. ## = \langle a|u\rangle \langle v|b\rangle##: That's just using the fact that for matrix elements, ##\langle A|B\rangle^* = \langle B | A \rangle##.
  5. ## = \langle v | b \rangle \langle a | u \rangle##: Since matrix elements are just numbers, you can change the order in a product.
So we've shown that ##\langle v | P^\dagger | u \rangle = \langle v | b \rangle \langle a | u \rangle##
Hmm step 4 to 5 got me
for ## \langle a|u\rangle \langle v|b\rangle##:
couldnt ## \langle a|u\rangle## give you a matrix and hence you can't simply change the product around?
 
Somali_Physicist said:
Hmm step 4 to 5 got me
for ## \langle a|u\rangle \langle v|b\rangle##:
couldnt ## \langle a|u\rangle## give you a matrix and hence you can't simply change the product around?
## \langle a|u\rangle## is a number, one that is equal to ## \langle u|a \rangle^*##
 
  • Like
Likes Somali_Physicist
Nugatory said:
## \langle a|u\rangle## is a number, one that is equal to ## \langle u|a \rangle^*##
So you can never get a 2 x m bra with m x 2 row?
Implying that for a given pair there will always be a 1 row matrix with n elements along with a 1 column matrix with n elements.

If that's the case then it makes sense!
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K