# Conservation of angular momentum in an inelastic collision?

mot

## Homework Statement

On a frictionless table, a glob of clay of mass 0.380 kg strikes a bar of mass 0.9 kg perpendicularly at a point 0.550 m from the center of the bar and sticks to it.
a) a) If the bar is 1.300 m long and the clay is moving at 8.100 m/s before striking the bar, what is the final speed of the center of mass? (Got this, 2.405m/s)
b)At what angular speed does the bar/clay system rotate about its center of mass after the impact (in rad/s)?

## Homework Equations

Li=Lf
L=r x p =mrv (when theta = 90, as in this case)
L=Iw
I of a rod = (ML2)/12
xcenter of mass=Ʃmx/Ʃm

## The Attempt at a Solution

m = mass of clay
M=mass of bar
u=clay's initial speed
r=the distance from the clay to the new CM

So I set one end of the bar as x=0 and the other as x=1.3 to calculate CM
CM=((0.38)(0.65+0.55)+(0.65)(0.9))/(0.9+0.38)=0.81328m from the end of the bar
r=1.2-0.81328=0.3867m

Initial angular velocity=mru
Final " "=((1/12)ML2+mr2
so ω=(mru)/((1/12)(ML2+mr2)
When I plug in my values, I get the wrong answer, it is supposed to be 5.73. Where am I going wrong? I have spent hours at this :( I'm so frustrated!

Last edited:

Homework Helper

## Homework Statement

On a frictionless table, a glob of clay of mass 0.380 kg strikes a bar of mass 0.9 kg perpendicularly at a point 0.430 m from the center of the bar and sticks to it.
a) a) If the bar is 1.300 m long and the clay is moving at 8.100 m/s before striking the bar, what is the final speed of the center of mass? (Got this, 2.405m/s)
b)At what angular speed does the bar/clay system rotate about its center of mass after the impact (in rad/s)?

## Homework Equations

Li=Lf
L=r x p =mrv (when theta = 90, as in this case)
L=Iw
I of a rod = (ML2)/12
xcenter of mass=Ʃmx/Ʃm

## The Attempt at a Solution

m = mass of clay
M=mass of bar
u=clay's initial speed
r=the distance from the clay to the new CM

So I set one end of the bar as x=0 and the other as x=1.3 to calculate CM
CM=((0.38)(0.65+0.55)+(0.65)(0.9))/(0.9+0.38)=0.81328m from the end of the bar
r=1.2-0.81328=0.3867m

Where are the data in red come from?

Initial angular velocity=mru
Final " "=((1/12)ML2+mr2

You need the moment of inertia with respect to the new CM. (1/12)ML2 is the moment of inertia with respect to the centre of the rod.

ehild

mot
Sorry I made a typo in the question, 0.43 should have been 0.55. I've fixed it now. (1.2 is 0.65+0.55, the "position" of the clay on the rod with respect to the end).

That's what I was thinking with the moment of inertia...but doesn't adding the mr^2 take that into account?
I could also do I=Ʃmr^2, where r is the distance from the new CM
=(0.9)(0.81328-0.65)^2+(0.38)(0.3867)^2=0.0808

and my old I=((1/12)(0.9)(1.3^2)+(0.38)(0.3867^2))=0.1836

The new I gives me 14.7rad/s when I plug it into the equation:(

Homework Helper
Last edited:
Staff Emeritus