Conservation of energy in Gravitation

Click For Summary
SUMMARY

The discussion centers on the conservation of energy and momentum during a rocket's interaction with Mars in the gravitational field of the Sun. It establishes that energy is conserved in Mars's frame, while in the Sun's frame, the event is treated as an elastic collision. Key equations are derived using Galilean transformations, illustrating how the rocket's velocity changes relative to both Mars and the Sun. The conversation emphasizes the importance of using the common center of mass frame for accurate calculations of momentum and energy conservation.

PREREQUISITES
  • Understanding of gravitational fields and their effects on moving objects
  • Familiarity with elastic collisions and conservation laws
  • Knowledge of Galilean transformations in classical mechanics
  • Concept of center of mass in multi-body systems
NEXT STEPS
  • Study the principles of conservation of momentum in elastic collisions
  • Learn about Galilean transformations and their applications in physics
  • Explore the concept of center of mass in gravitational interactions
  • Investigate energy conservation in non-inertial reference frames
USEFUL FOR

Students of physics, aerospace engineers, and anyone interested in understanding the dynamics of gravitational interactions and elastic collisions in space travel.

phantomvommand
Messages
287
Reaction score
39
Suppose a rocket is moving at radial velocity vr and tangential velocity vt in the Sun's gravitational field. At some time, the rocket enters the gravitational field of Mars (with the above mentioned velocities), and gravitation effects due to the Sun can be ignored. After more time, the rocket leaves the g-field of Mars. Let Mars move at velocity vm with respect to the Sun.

The textbook has claimed that in Mars's frame, the energy of the rocket is conserved, while in the Sun's frame, this event is seen as an elastic collision between Mars and the rocket.

I can see how energy of the rocket is solely conserved in Mars's frame, like how objects in Earth's g-field have their energy conserved basically. But how does the "elastic collision" in the Sun frame work? What would be the equations of conservation of momentum/energy? You guys are welcome to introduce new variables to quantify/better illustrate your explanations. Thank you!
 
Last edited:
Physics news on Phys.org
phantomvommand said:
But how does the "elastic collision" in the Sun frame work?
A head on elastic collision with an much heavier object means the speed relative to the heavier object is approximately conserved, just the direction is reversed.

Let v and U be the speeds of rocket and planet moving in opposite directions in the sun's frame. If you simplify the trajectory to a U-turn as shown below:

- In the planet's frame the rocket velocity goes from v+U to -(v+U)
- In the sun's frame the rocket velocity goes from v to -(v+2U)

This is a simple Galilean Transformation (subtracting U from both velocities)

700px-Gravitational_slingshot.svg.png

From: https://wiki.kerbalspaceprogram.com/wiki/Tutorial:_Gravity_Assist

phantomvommand said:
I can see how energy of the rocket is solely conserved in Mars's frame, like how objects in Earth's g-field have their energy conserved basically.
That is actually an approximation, because Mars is accelerated by the rocket, so its frame is not perfectly inertial. This doesn't matter much for energy, but it does for momentum. You can use the common center of mass frame of Mars and rocket to have conservation of energy and momentum.

phantomvommand said:
But how does the "elastic collision" in the Sun frame work? What would be the equations of conservation of momentum/energy?
Here again you have to use the common center of mass frame of Sun, Mars and rocket, to have conservation of energy and momentum.
 
Last edited:
  • Like
Likes   Reactions: phantomvommand and PeroK
Note that elastic collisions also conserve energy, by definition.
 
  • Like
Likes   Reactions: phantomvommand
phantomvommand said:
I can see how energy of the rocket is solely conserved in Mars's frame, like how objects in Earth's g-field have their energy conserved basically. But how does the "elastic collision" in the Sun frame work? What would be the equations of conservation of momentum/energy? You guys are welcome to introduce new variables to quantify/better illustrate your explanations. Thank you!
Another way to describe an elastic collison is one where the separation speed between the two objects is the same before and after the collision. That implies that the KE of each object is conserved in the frame of the other.
 
  • Like
Likes   Reactions: phantomvommand
PeroK said:
Another way to describe an elastic collison is one where the separation speed between the two objects is the same before and after the collision. That implies that the KE of each object is conserved in the frame of the other.

A common analogy is throwing a ball against a wall that is approaching you:
https://solarsystem.nasa.gov/basics/primer/

Gravity-Assist-Cartoon-1095x502.png
This is also similar to making an effieicent U-turn with a plane in a moving airmass:

 
  • Like
Likes   Reactions: phantomvommand

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
9K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K